Difference between revisions of "2001 AIME I Problems/Problem 11"
I_like_pie (talk | contribs) |
m |
||
Line 1: | Line 1: | ||
== Problem == | == Problem == | ||
+ | In a rectangular array of points, with 5 rows and <math>N</math> columns, the points are numbered consecutively from left to right beginning with the top row. Thus the top row is numbered 1 through <math>N,</math> the second row is numbered <math>N + 1</math> through <math>2N,</math> and so forth. Five points, <math>P_1, P_2, P_3, P_4,</math> and <math>P_5,</math> are selected so that each <math>P_i</math> is in row <math>i.</math> Let <math>x_i</math> be the number associated with <math>P_i.</math> Now renumber the array consecutively from top to bottom, beginning with the first column. Let <math>y_i</math> be the number associated with <math>P_i</math> after the renumbering. It is found that <math>x_1 = y_2,</math> <math>x_2 = y_1,</math> <math>x_3 = y_4,</math> <math>x_4 = y_5,</math> and <math>x_5 = y_3.</math> Find the smallest possible value of <math>N.</math> | ||
== Solution == | == Solution == | ||
+ | {{solution}} | ||
== See also == | == See also == | ||
− | + | {{AIME box|year=2001|n=I|num-b=10|num-a=12}} | |
− | |||
− | |||
− | |||
− |
Revision as of 23:24, 19 November 2007
Problem
In a rectangular array of points, with 5 rows and columns, the points are numbered consecutively from left to right beginning with the top row. Thus the top row is numbered 1 through the second row is numbered through and so forth. Five points, and are selected so that each is in row Let be the number associated with Now renumber the array consecutively from top to bottom, beginning with the first column. Let be the number associated with after the renumbering. It is found that and Find the smallest possible value of
Solution
This problem needs a solution. If you have a solution for it, please help us out by adding it.
See also
2001 AIME I (Problems • Answer Key • Resources) | ||
Preceded by Problem 10 |
Followed by Problem 12 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |