Difference between revisions of "2019 AMC 8 Problems/Problem 10"
m |
m (→Problem 10) |
||
Line 2: | Line 2: | ||
=Problem 10= | =Problem 10= | ||
− | + | sfgd | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
<math>\textbf{(A) }</math>The mean increases by <math>1</math> and the median does not change. | <math>\textbf{(A) }</math>The mean increases by <math>1</math> and the median does not change. |
Revision as of 12:34, 18 April 2020
Problem 10
sfgd
The mean increases by and the median does not change.
The mean increases by and the median increases by .
The mean increases by and the median increases by .
The mean increases by and the median increases by .
The mean increases by and the median increases by .
Solution 1
On Monday, people come. On Tuesday, people come. On Wednesday, people come. On Thursday, people come. Finally, on Friday, people come. , so the mean is . The median is . The coach figures out that actually people come on Wednesday. The new mean is , while the new median is . The median and mean both change, so the answer is Another way to compute the change in mean is to notice that the sum increased by with the correction. So the average increased by .
See Also
2019 AMC 8 (Problems • Answer Key • Resources) | ||
Preceded by Problem 9 |
Followed by Problem 11 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AJHSME/AMC 8 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.