Difference between revisions of "2015 IMO Problems/Problem 3"
m (Corrected LaTeX) |
(Added IMO box and category) |
||
Line 2: | Line 2: | ||
Prove that the circumcircles of triangles <math>KQH</math> and <math>FKM</math> are tangent to each other. | Prove that the circumcircles of triangles <math>KQH</math> and <math>FKM</math> are tangent to each other. | ||
+ | |||
+ | ==See Also== | ||
+ | |||
+ | {{IMO box|year=2015|num-b=2|num-a=4}} | ||
+ | |||
+ | [[Category:Olympiad Geometry Problems]] |
Revision as of 00:36, 31 December 2019
Let be an acute triangle with . Let be its circumcircle, its orthocenter, and the foot of the altitude from . Let be the midpoint of . Let be the point on such that . Assume that the points , , , , and are all different, and lie on in this order.
Prove that the circumcircles of triangles and are tangent to each other.
See Also
2015 IMO (Problems) • Resources | ||
Preceded by Problem 2 |
1 • 2 • 3 • 4 • 5 • 6 | Followed by Problem 4 |
All IMO Problems and Solutions |