Difference between revisions of "2013 AMC 12A Problems/Problem 21"
(→Solution 3) |
|||
Line 50: | Line 50: | ||
So <math>A<\log(2017)</math>. | So <math>A<\log(2017)</math>. | ||
But this leaves only one answer, so we are done. | But this leaves only one answer, so we are done. | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
==See Also== | ==See Also== | ||
{{AMC12 box|year=2013|ab=A|num-b=20|num-a=22}} | {{AMC12 box|year=2013|ab=A|num-b=20|num-a=22}} | ||
{{MAA Notice}} | {{MAA Notice}} |
Revision as of 00:33, 17 December 2019
Contents
Problem
Consider . Which of the following intervals contains ?
Solution 1
Let and , and from the problem description,
We can reason out an approximation, by ignoring the :
And a better approximation, by plugging in our first approximation for in our original definition for :
And an even better approximation:
Continuing this pattern, obviously, will eventually terminate at , in other words our original definition of .
However, at , going further than will not distinguish between our answer choices. is nearly indistinguishable from .
So we take and plug in.
Since , we know . This gives us our answer range:
Solution 2
Suppose . Then . So if , then . So . Repeating, we then get . This is clearly absurd (the RHS continues to grow more than exponentially for each iteration). So, is not greater than . So . But this leaves only one answer, so we are done.
See Also
2013 AMC 12A (Problems • Answer Key • Resources) | |
Preceded by Problem 20 |
Followed by Problem 22 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.