Difference between revisions of "2002 AIME II Problems/Problem 6"
Greenpizza96 (talk | contribs) m |
(→Solution) |
||
Line 23: | Line 23: | ||
Then we have <math>\frac{1}{(n+2)(n-2)} = \frac{ \frac{1}{4} }{(n-2)} + \frac{ \frac{-1}{4} }{(n+2)}</math> and we can continue as before. | Then we have <math>\frac{1}{(n+2)(n-2)} = \frac{ \frac{1}{4} }{(n-2)} + \frac{ \frac{-1}{4} }{(n+2)}</math> and we can continue as before. | ||
+ | == Solution == | ||
+ | Using the fact that <math>\frac{1}{n(n+k)} = \frac{1}{k} ( \frac{1}{n}-\frac{1}{n+k} )</math> or by partial fraction decomposition, we both obtained <math>\frac{1}{x^2-4} = \frac{1}{4}(\frac{1}{x-2}-\frac{1}{x+2})</math>. The denominators of the positive terms are <math>1,2,..,9998</math>, while the negative ones are <math>5,6,...,10002</math>. Hence we are left with <math>1000 \cdot 4 (1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} - \frac{1}{9999} - \frac{1}{10000} - \frac{1}{10001} - \frac{1}{10002})</math>. We can simply ignore the last <math>4</math> terms, and we get it is approximately <math>1000*\frac{25}{48}</math>. Computing <math>\frac{25}{48}</math> which is about <math>0.5208..</math> and moving the decimal point three times, we get that the answer is <math>521</math> | ||
== See also == | == See also == |
Revision as of 04:47, 24 June 2020
Contents
Problem
Find the integer that is closest to .
Solution
We know that .
So if we pull the out of the summation, you get
.
Now that telescopes, leaving you with:
The small fractional terms are not enough to bring lower than so the answer is
If you didn't know , here's how you can find it out:
We know . We can use the process of fractional decomposition to split this into two fractions thus: for some A and B.
Solving for A and B gives or . Since there is no n term on the left hand side, and by inspection . Solving yields
Then we have and we can continue as before.
Solution
Using the fact that or by partial fraction decomposition, we both obtained . The denominators of the positive terms are , while the negative ones are . Hence we are left with . We can simply ignore the last terms, and we get it is approximately . Computing which is about and moving the decimal point three times, we get that the answer is
See also
2002 AIME II (Problems • Answer Key • Resources) | ||
Preceded by Problem 5 |
Followed by Problem 7 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.