Difference between revisions of "2019 AMC 8 Problems/Problem 7"
(→Solution 1) |
(→Solution 1) |
||
Line 8: | Line 8: | ||
148</math> points in her <math>2</math> tests. So the minimum score she can get is when one of her <math>2</math> scores is <math>100</math>. So the least possible score she can get is <math>\boxed{\textbf{(A)}\ 48}</math>. | 148</math> points in her <math>2</math> tests. So the minimum score she can get is when one of her <math>2</math> scores is <math>100</math>. So the least possible score she can get is <math>\boxed{\textbf{(A)}\ 48}</math>. | ||
~heeeeeeeheeeeee | ~heeeeeeeheeeeee | ||
− | Note: You can verify that | + | Note: You can verify that <math>\boxed{48}</math> is the right answer because it is the lowest answer out of the 5. Since it is possible to get 48, we are guaranteed that that is the right answer. |
~~ gorefeebuddie | ~~ gorefeebuddie | ||
Revision as of 19:29, 24 November 2019
Problem 7
Shauna takes five tests, each worth a maximum of points. Her scores on the first three tests are , , and . In order to average for all five tests, what is the lowest score she could earn on one of the other two tests?
Solution 1
Right now, she scored and points, with a total of points. She wants her average to be for her tests so she needs to score points in total. She needs to score a total of points in her tests. So the minimum score she can get is when one of her scores is . So the least possible score she can get is . ~heeeeeeeheeeeee Note: You can verify that is the right answer because it is the lowest answer out of the 5. Since it is possible to get 48, we are guaranteed that that is the right answer. ~~ gorefeebuddie
See Also
2019 AMC 8 (Problems • Answer Key • Resources) | ||
Preceded by Problem 6 |
Followed by Problem 8 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AJHSME/AMC 8 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.