Difference between revisions of "2019 AMC 8 Problems/Problem 4"
Phoenixfire (talk | contribs) (Created page with "== Solution == <asy> draw((-13,0)--(0,5)); draw((0,5)--(13,0)); draw((13,0)--(0,-5)); draw((0,-5)--(-13,0)); draw((0,0)--(13,0)); draw((0,0)--(0,5)); draw((0,0)--(-13,0)); dra...") |
Phoenixfire (talk | contribs) (→Solution) |
||
Line 1: | Line 1: | ||
== Solution == | == Solution == | ||
<asy> | <asy> | ||
− | draw((- | + | draw((-12,0)--(0,5)); |
− | draw((0,5)--( | + | draw((0,5)--(12,0)); |
− | draw(( | + | draw((12,0)--(0,-5)); |
− | draw((0,-5)--(- | + | draw((0,-5)--(-12,0)); |
− | draw((0,0)--( | + | draw((0,0)--(12,0)); |
draw((0,0)--(0,5)); | draw((0,0)--(0,5)); | ||
− | draw((0,0)--(- | + | draw((0,0)--(-12,0)); |
draw((0,0)--(0,-5)); | draw((0,0)--(0,-5)); | ||
− | dot((- | + | dot((-12,0)); |
dot((0,5)); | dot((0,5)); | ||
− | dot(( | + | dot((12,0)); |
dot((0,-5)); | dot((0,-5)); | ||
− | label("A",(- | + | label("A",(-12,0),W); |
label("B",(0,5),N); | label("B",(0,5),N); | ||
− | label("C",( | + | label("C",(12,0),E); |
label("D",(0,-5),S); | label("D",(0,-5),S); | ||
label("E",(0,0),SW); | label("E",(0,0),SW); | ||
Line 26: | Line 26: | ||
<asy> | <asy> | ||
− | draw((- | + | draw((-12,0)--(0,5)); |
− | draw((0,0)--(- | + | draw((0,0)--(-12,0)); |
draw((0,0)--(0,5)); | draw((0,0)--(0,5)); | ||
− | dot((- | + | dot((-12,0)); |
dot((0,5)); | dot((0,5)); | ||
− | label("A",(- | + | label("A",(-12,0),W); |
label("B",(0,5),N); | label("B",(0,5),N); | ||
label("E",(0,0),SE); | label("E",(0,0),SE); | ||
Line 42: | Line 42: | ||
Thus the values of the two diagonals are <math>\overline{AC}</math> = <math>24</math> and <math>\overline{BD}</math> = <math>10</math>. | Thus the values of the two diagonals are <math>\overline{AC}</math> = <math>24</math> and <math>\overline{BD}</math> = <math>10</math>. | ||
Which means area = <math>\frac{d_1*d_2}{2}</math> = <math>\frac{24*10}{2}</math> = <math>120</math> | Which means area = <math>\frac{d_1*d_2}{2}</math> = <math>\frac{24*10}{2}</math> = <math>120</math> | ||
+ | <math>\boxed{\textbf{(D)}\ 120}</math> |
Revision as of 01:24, 20 November 2019
Solution
Because it is a rhombus all sides are equal. Implies all sides are 13. In a rhombus diagonals are perpendicular and bisect each other. Which means = = .
Consider one of the right triangles.
= . = . Which means = .
Thus the values of the two diagonals are = and = . Which means area = = =