Difference between revisions of "2015 AMC 8 Problems/Problem 12"

m
m
Line 22: Line 22:
  
 
==Solution 2==
 
==Solution 2==
Look at any edge, let's say <math>\overline{AB}</math>. There are three ways we can pair <math>\overline{AB}</math> with another edge. <math>\overline{AB}\text{ and }\overline{EF}</math>, <math>\overline{AB}\text{ and }\overline{HG}</math>, and <math>\overline{AB}\text{ and }\overline{DC}</math>. There are 12 edges on a cube. 3 times 12 is 36. We have to divide by 2 because every pair is counted twice, so <math>\frac{36}{2}</math> is (C) 18 total pairs of parallel lines.
+
Look at any edge, let's say <math>\overline{AB}</math>. There are three ways we can pair <math>\overline{AB}</math> with another edge. <math>\overline{AB}\text{ and }\overline{EF}</math>, <math>\overline{AB}\text{ and }\overline{HG}</math>, and <math>\overline{AB}\text{ and }\overline{DC}</math>. There are 12 edges on a cube. 3 times 12 is 36. We have to divide by 2 because every pair is counted twice, so <math>\frac{36}{2}</math> is <math>\boxed{\textbf{(C) } 18}</math> total pairs of parallel lines.
  
 
-NoisedHens
 
-NoisedHens

Revision as of 20:44, 12 November 2019

How many pairs of parallel edges, such as $\overline{AB}$ and $\overline{GH}$ or $\overline{EH}$ and $\overline{FG}$, does a cube have?


$\textbf{(A) }6 \quad\textbf{(B) }12 \quad\textbf{(C) } 18 \quad\textbf{(D) } 24 \quad \textbf{(E) } 36$ [asy] import three; currentprojection=orthographic(1/2,-1,1/2); /* three - currentprojection, orthographic */ draw((0,0,0)--(1,0,0)--(1,1,0)--(0,1,0)--cycle); draw((0,0,0)--(0,0,1)); draw((0,1,0)--(0,1,1)); draw((1,1,0)--(1,1,1)); draw((1,0,0)--(1,0,1));  draw((0,0,1)--(1,0,1)--(1,1,1)--(0,1,1)--cycle); label("$D$",(0,0,0),S); label("$A$",(0,0,1),N); label("$H$",(0,1,0),S); label("$E$",(0,1,1),N); label("$C$",(1,0,0),S); label("$B$",(1,0,1),N); label("$G$",(1,1,0),S); label("$F$",(1,1,1),N); [/asy]

Solution 1

We first count the number of pairs of parallel lines that are in the same direction as $\overline{AB}$. The pairs of parallel lines are $\overline{AB}\text{ and }\overline{EF}$, $\overline{CD}\text{ and }\overline{GH}$, $\overline{AB}\text{ and }\overline{CD}$, $\overline{EF}\text{ and }\overline{GH}$, $\overline{AB}\text{ and }\overline{GH}$, and $\overline{CD}\text{ and }\overline{EF}$. These are $6$ pairs total. We can do the same for the lines in the same direction as $\overline{AE}$ and $\overline{AD}$. This means there are $6\cdot 3=\boxed{\textbf{(C) } 18}$ total pairs of parallel lines.

Solution 2

Look at any edge, let's say $\overline{AB}$. There are three ways we can pair $\overline{AB}$ with another edge. $\overline{AB}\text{ and }\overline{EF}$, $\overline{AB}\text{ and }\overline{HG}$, and $\overline{AB}\text{ and }\overline{DC}$. There are 12 edges on a cube. 3 times 12 is 36. We have to divide by 2 because every pair is counted twice, so $\frac{36}{2}$ is $\boxed{\textbf{(C) } 18}$ total pairs of parallel lines.

-NoisedHens

Please add the latex for the box. Delete this line when finished.

See Also

2015 AMC 8 (ProblemsAnswer KeyResources)
Preceded by
Problem 11
Followed by
Problem 13
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png