Difference between revisions of "1971 AHSME Problems/Problem 32"
(Created page with "== Problem 32 ==") |
(→Problem 32) |
||
Line 1: | Line 1: | ||
== Problem 32 == | == Problem 32 == | ||
+ | |||
+ | If <math>s=(1+2^{-\frac{1}{32}})(1+2^{-\frac{1}{16}})(1+2^{-\frac{1}{8}})(1+2^{-\frac{1}{4}})(1+2^{-\frac{1}{2}})</math>, then <math>s</math> is equal to | ||
+ | |||
+ | <math>\textbf{(A) }\textstyle{\frac{1}{2}}(1-2^{-\frac{1}{32}})^{-1}\qquad \textbf{(B) }(1-2^{-\frac{1}{32}})^{-1}\qquad \textbf{(C) }1-2^{-\frac{1}{32}}\qquad \\ \textbf{(D) }\textstyle{\frac{1}{2}}(1-2^{-\frac{1}{32}})\qquad \textbf{(E) }\frac{1}{2}</math> |
Revision as of 21:17, 16 August 2019
Problem 32
If , then is equal to