Difference between revisions of "2003 AMC 10A Problems/Problem 6"

(added problem and solution)
 
(See Also)
Line 22: Line 22:
  
 
== See Also ==
 
== See Also ==
*[[2003 AMC 10A Problems]]
+
{{AMC10 box|year=2003|ab=A|num-b=5|num-a=7}}
*[[2003 AMC 10A Problems/Problem 5|Previous Problem]]
 
*[[2003 AMC 10A Problems/Problem 7|Next Problem]]
 
  
 
[[Category:Introductory Algebra Problems]]
 
[[Category:Introductory Algebra Problems]]

Revision as of 10:15, 15 January 2008

Problem

Define $x \heartsuit y$ to be $|x-y|$ for all real numbers $x$ and $y$. Which of the following statements is not true?

$\mathrm{(A) \ } x \heartsuit y = y \heartsuit x$ for all $x$ and $y$

$\mathrm{(B) \ } 2(x \heartsuit y) = (2x) \heartsuit (2y)$ for all $x$ and $y$

$\mathrm{(C) \ } x \heartsuit 0 = x$ for all $x$

$\mathrm{(D) \ } x \heartsuit x = 0$ for all $x$

$\mathrm{(E) \ } x \heartsuit y > 0$ if $x \neq y$

Solution

Examining statement C:

$x \heartsuit 0 = |x-0| = |x|$

$|x| \neq x$ when $x<0$, but statement D says that it does for all $x$.

Therefore the statement that is not true is "$x \heartsuit 0 = x$ for all $x$" $\Rightarrow C$

See Also

2003 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 5
Followed by
Problem 7
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions