Difference between revisions of "2005 AMC 10A Problems/Problem 20"
Line 3: | Line 3: | ||
<math> \mathrm{(A) \ } \frac72\qquad \mathrm{(B) \ } \frac{7\sqrt2}{2}\qquad \mathrm{(C) \ } \frac{5+4\sqrt2}{2}\qquad \mathrm{(D) \ } \frac{4+5\sqrt2}{2}\qquad \mathrm{(E) \ } 7 </math> | <math> \mathrm{(A) \ } \frac72\qquad \mathrm{(B) \ } \frac{7\sqrt2}{2}\qquad \mathrm{(C) \ } \frac{5+4\sqrt2}{2}\qquad \mathrm{(D) \ } \frac{4+5\sqrt2}{2}\qquad \mathrm{(E) \ } 7 </math> | ||
+ | |||
+ | ==See Also== | ||
+ | *[[2005 AMC 10A Problems]] | ||
+ | |||
+ | *[[2005 AMC 10A Problems/Problem 19|Previous Problem]] | ||
+ | |||
+ | *[[2005 AMC 10A Problems/Problem 21|Next Problem]] | ||
+ | |||
+ | [[Category:Introductory Geometry Problems]] |
Revision as of 15:30, 4 November 2006
Problem
An equiangular octagon has four sides of length 1 and four sides of length , arranged so that no two consecutive sides have the same length. What is the area of the octagon?