Difference between revisions of "2005 AMC 10A Problems/Problem 20"

 
Line 3: Line 3:
  
 
<math> \mathrm{(A) \ } \frac72\qquad \mathrm{(B) \ }  \frac{7\sqrt2}{2}\qquad \mathrm{(C) \ }  \frac{5+4\sqrt2}{2}\qquad \mathrm{(D) \ }  \frac{4+5\sqrt2}{2}\qquad \mathrm{(E) \ }  7 </math>
 
<math> \mathrm{(A) \ } \frac72\qquad \mathrm{(B) \ }  \frac{7\sqrt2}{2}\qquad \mathrm{(C) \ }  \frac{5+4\sqrt2}{2}\qquad \mathrm{(D) \ }  \frac{4+5\sqrt2}{2}\qquad \mathrm{(E) \ }  7 </math>
 +
 +
==See Also==
 +
*[[2005 AMC 10A Problems]]
 +
 +
*[[2005 AMC 10A Problems/Problem 19|Previous Problem]]
 +
 +
*[[2005 AMC 10A Problems/Problem 21|Next Problem]]
 +
 +
[[Category:Introductory Geometry Problems]]

Revision as of 15:30, 4 November 2006

Problem

An equiangular octagon has four sides of length 1 and four sides of length $\sqrt2/2$, arranged so that no two consecutive sides have the same length. What is the area of the octagon?

$\mathrm{(A) \ } \frac72\qquad \mathrm{(B) \ }  \frac{7\sqrt2}{2}\qquad \mathrm{(C) \ }  \frac{5+4\sqrt2}{2}\qquad \mathrm{(D) \ }  \frac{4+5\sqrt2}{2}\qquad \mathrm{(E) \ }  7$

See Also