Difference between revisions of "2002 AMC 12B Problems/Problem 13"
(→Solution 2) |
(→Solution 2) |
||
Line 18: | Line 18: | ||
Let <math>a</math> be the smallest number, we have <cmath>a+(a+1)+(a+2)+...+(a+17)=18a+\sum_{k=1}^{17}k=18a+153</cmath> | Let <math>a</math> be the smallest number, we have <cmath>a+(a+1)+(a+2)+...+(a+17)=18a+\sum_{k=1}^{17}k=18a+153</cmath> | ||
− | Subtract 153 from each of the choices and then check its divisibility by 18, we have 225 as the smallest possible sum. <math>\mathrm {(B)}</math> | + | Subtract <math>153</math> from each of the choices and then check its divisibility by <math>18</math>, we have <math>225</math> as the smallest possible sum. <math>\mathrm {(B)}</math> |
~ Nafer | ~ Nafer |
Revision as of 14:59, 2 July 2019
Problem
The sum of consecutive positive integers is a perfect square. The smallest possible value of this sum is
Solution
Solution 1
Let be the consecutive positive integers. Their sum, , is a perfect square. Since is a perfect square, it follows that is a perfect square. The smallest possible such perfect square is when , and the sum is .
Solution 2
Notice that all five choices given are perfect squares.
Let be the smallest number, we have
Subtract from each of the choices and then check its divisibility by , we have as the smallest possible sum.
~ Nafer
See also
2002 AMC 12B (Problems • Answer Key • Resources) | |
Preceded by Problem 12 |
Followed by Problem 14 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.