Difference between revisions of "2019 USAMO Problems/Problem 1"
Line 1: | Line 1: | ||
− | ==Problem | + | ==Problem== |
Let <math>\mathbb{N}</math> be the set of positive integers. A function <math>f:\mathbb{N}\to\mathbb{N}</math> satisfies the equation <cmath>\underbrace{f(f(\ldots f}_{f(n)\text{ times}}(n)\ldots))=\frac{n^2}{f(f(n))}</cmath>for all positive integers <math>n</math>. Given this information, determine all possible values of <math>f(1000)</math>. | Let <math>\mathbb{N}</math> be the set of positive integers. A function <math>f:\mathbb{N}\to\mathbb{N}</math> satisfies the equation <cmath>\underbrace{f(f(\ldots f}_{f(n)\text{ times}}(n)\ldots))=\frac{n^2}{f(f(n))}</cmath>for all positive integers <math>n</math>. Given this information, determine all possible values of <math>f(1000)</math>. | ||
Revision as of 23:06, 19 April 2019
Problem
Let be the set of positive integers. A function satisfies the equation for all positive integers . Given this information, determine all possible values of .
Solution
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.
See also
2019 USAMO (Problems • Resources) | ||
First Problem | Followed by Problem 2 | |
1 • 2 • 3 • 4 • 5 • 6 | ||
All USAMO Problems and Solutions |