Difference between revisions of "2019 AIME II Problems/Problem 15"
(→Solution) |
m (→Solution) |
||
Line 14: | Line 14: | ||
<math>525= \frac{ab}{k} - b^2</math> | <math>525= \frac{ab}{k} - b^2</math> | ||
+ | |||
Or | Or | ||
Revision as of 19:16, 22 March 2019
Problem
In acute triangle points and are the feet of the perpendiculars from to and from to , respectively. Line intersects the circumcircle of in two distinct points, and . Suppose , , and . The value of can be written in the form where and are positive relatively prime integers. Find .
Solution
Let
Therefore
By power of point, we have Which are simplified to
Or
(1)
Or
Let Then,
In triangle , by law of cosine
Pluging (1)
Or
Substitute everything by
The quadratic term is cancelled out after simplified
Which gives
Plug back in,
Then
So the final answer is 560 + 14 = 574
By SpecialBeing2017
See Also
2019 AIME II (Problems • Answer Key • Resources) | ||
Preceded by Problem 14 |
Followed by Last Question | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.