Difference between revisions of "2019 AIME II Problems/Problem 10"
Brendanb4321 (talk | contribs) m (→Problem 10) |
(→Solution) |
||
Line 3: | Line 3: | ||
==Solution== | ==Solution== | ||
+ | Note that if <math>\tan \theta</math> is positive, then <math>\theta</math> is in the first or third quadrant, so <math>0^{\circ} < \theta < 90^{\circ} \pmod{180^{\circ}}</math>. Also notice that the only way <math>\tan{\left(2^{n}\theta\right)}</math> can be positive for all <math>n</math> that are multiples of <math>3</math> is when <math>2^0\theta, 2^3\theta, 2^6\theta</math>, etc. are all the same value <math>\pmod{180^{\circ}}</math>. This happens if <math>8\theta = \theta \pmod{180^{\circ}}</math>, so <math>7\theta = 0^{\circ} \pmod{180^{\circ}}</math>. Therefore, the only possible values of theta between <math>0^{\circ}</math> and <math>90^{\circ}</math> are <math>\frac{180}{7}^{\circ}</math>, <math>\frac{360}{7}^{\circ}</math>, and <math>\frac{540}{7}^{\circ}</math>. However <math>\frac{180}{7}^{\circ}</math> does not work since <math>\tan{2 \cdot \frac{180}{7}^{\circ}}</math> is positive, and <math>\frac{360}{7}^{\circ}</math> does not work because <math>\tan{4 \cdot \frac{360}{7}^{\circ}}</math> is positive. Thus, <math>\theta = \frac{540}{7}^{\circ}</math>. <math>540 + 7 = \boxed{547}</math>. | ||
==See Also== | ==See Also== | ||
{{AIME box|year=2019|n=II|num-b=9|num-a=11}} | {{AIME box|year=2019|n=II|num-b=9|num-a=11}} | ||
{{MAA Notice}} | {{MAA Notice}} |
Revision as of 17:41, 22 March 2019
Problem 10
There is a unique angle between and such that for nonnegative integers , the value of is positive when is a multiple of , and negative otherwise. The degree measure of is , where and are relatively prime integers. Find .
Solution
Note that if is positive, then is in the first or third quadrant, so . Also notice that the only way can be positive for all that are multiples of is when , etc. are all the same value . This happens if , so . Therefore, the only possible values of theta between and are , , and . However does not work since is positive, and does not work because is positive. Thus, . .
See Also
2019 AIME II (Problems • Answer Key • Resources) | ||
Preceded by Problem 9 |
Followed by Problem 11 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.