Difference between revisions of "2019 AIME II Problems/Problem 1"
(→Solution) |
Brendanb4321 (talk | contribs) (→Solution) |
||
Line 3: | Line 3: | ||
==Solution== | ==Solution== | ||
+ | <asy> | ||
+ | unitsize(10); | ||
+ | pair A = (0,0); | ||
+ | pair B = (9,0); | ||
+ | pair C = (15,8); | ||
+ | pair D = (-6,8); | ||
+ | draw(A--B--C--cycle); | ||
+ | draw(B--D--A); | ||
+ | label("$A$",A,dir(-120)); | ||
+ | label("$B$",B,dir(-60)); | ||
+ | label("$C$",C,dir(60)); | ||
+ | label("$D$",D,dir(120)); | ||
+ | label("$9$",(A+B)/2,dir(-90)); | ||
+ | label("$10$",(D+A)/2,dir(-150)); | ||
+ | label("$10$",(C+B)/2,dir(-30)); | ||
+ | label("$17$",(D+B)/2,dir(60)); | ||
+ | label("$17$",(A+C)/2,dir(120)); | ||
+ | |||
+ | draw(D--(-6,0)--A,dotted); | ||
+ | label("$8$",(D+(-6,0))/2,dir(180)); | ||
+ | label("$6$",(A+(-6,0))/2,dir(-90)); | ||
+ | |||
+ | </asy> |
Revision as of 16:46, 22 March 2019
Problem
Two different points, and , lie on the same side of line so that and are congruent with , , and . The intersection of these two triangular regions has area , where and are relatively prime positive integers. Find .
Solution