Difference between revisions of "2019 AIME II Problems"

(Problem 6)
(Problem 7)
Line 41: Line 41:
  
 
==Problem 7==
 
==Problem 7==
 +
Triangle <math>ABC</math> has side lengths <math>AB=120,BC=220</math>, and <math>AC=180</math>. Lines <math>\ell_A,\ell_B</math>, and <math>\ell_C</math> are drawn parallel to <math>\overline{BC},\overline{AC}</math>, and <math>\overline{AB}</math>, respectively, such that the intersections of <math>\ell_A,\ell_B</math>, and <math>\ell_C</math> with the interior of <math>\triangle ABC</math> are segments of lengths <math>55,45</math>, and <math>15</math>, respectively. Find the perimeter of the triangle whose sides lie on lines <math>\ell_A,\ell_B</math>, and <math>\ell_C</math>.
  
 
[[2019 AIME II Problems/Problem 7 | Solution]]
 
[[2019 AIME II Problems/Problem 7 | Solution]]

Revision as of 15:32, 22 March 2019

2019 AIME II (Answer Key)
Printable version | AoPS Contest CollectionsPDF

Instructions

  1. This is a 15-question, 3-hour examination. All answers are integers ranging from $000$ to $999$, inclusive. Your score will be the number of correct answers; i.e., there is neither partial credit nor a penalty for wrong answers.
  2. No aids other than scratch paper, graph paper, ruler, compass, and protractor are permitted. In particular, calculators and computers are not permitted.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Problem 1

Two different points, $C$ and $D$, lie on the same side of line $AB$ so that $\triangle ABC$ and $\triangle BAD$ are congruent with $AB=9,BC=AD=10$, and $CA=DB=17$. The intersection of these two triangular regions has area $\tfrac{m}{n}$, where $m$ and $n$ are relatively prime positive integers. Find $m+n$.

Solution

Problem 2

Lily pads $1,2,3,\ldots$ lie in a row on a pond. A frog makes a sequence of jumps starting on pad $1$. From any pad $k$ the frog jumps to either pad $k+1$ or pad $k+2$ chosen randomly with probability $\tfrac{1}{2}$ and independently of other jumps. The probability that the frog visits pad $7$ is $\tfrac{p}{q}$, where $p$ and $q$ are relatively prime positive integers. Find $p+q$.

Solution

Problem 3

Find the number of $7$-tuples of positive integers $(a,b,c,d,e,f,g)$ that satisfy the following system of equations: \[abc=70\] \[cde=71\] \[efg=72.\]

Solution

Problem 4

A standard six-sided fair die is rolled four times. The probability that the product of all four numbers rolled is a perfect square is $\tfrac{m}{n}$, where $m$ and $n$ are relatively prime positive integers. Find $m+n$.

Solution

Problem 5

Four ambassadors and one advisor for each of then are to be seated at a round table with $12$ chairs numbered in order $1$ to $12$. Each ambassador must sit in an even-numbered chair. Each advisor must sit in a chair adjacent to his or her ambassador. There are $N$ ways for the $8$ people to be seated at the table under these conditions. Find the remainder when $N$ is divided by $1000$.

Solution

Problem 6

In a Martian civilization, all logarithms whose bases are not specified as assumed to be base $b$, for some fixed $b\ge2$. A Martian student writes down \[3\log(\sqrt{x}\log x)=56\] \[\log_{\log x}(x)=54\] and finds that this system of equations has a single real number solution $x>1$. Find $b$.

Solution

Problem 7

Triangle $ABC$ has side lengths $AB=120,BC=220$, and $AC=180$. Lines $\ell_A,\ell_B$, and $\ell_C$ are drawn parallel to $\overline{BC},\overline{AC}$, and $\overline{AB}$, respectively, such that the intersections of $\ell_A,\ell_B$, and $\ell_C$ with the interior of $\triangle ABC$ are segments of lengths $55,45$, and $15$, respectively. Find the perimeter of the triangle whose sides lie on lines $\ell_A,\ell_B$, and $\ell_C$.

Solution

Problem 8

Solution

Problem 9

Solution

Problem 10

Solution

Problem 11

Solution

Problem 12

Solution

Problem 13

Solution

Problem 14

Solution

Problem 15

Solution

2019 AIME II (ProblemsAnswer KeyResources)
Preceded by
2019 AIME I
Followed by
2020 AIME I
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png