Difference between revisions of "1985 AIME Problems/Problem 13"
(→Solution) |
(→Problem) |
||
Line 1: | Line 1: | ||
== Problem == | == Problem == | ||
− | The numbers in the [[sequence]] <math>101</math>, <math>104</math>, <math>109</math>, <math>116</math>,<math>\ldots</math> are of the form <math>a_n=100+n^2</math>, where <math>n=1,2,3,\ldots</math> For each <math>n</math>, let <math>d_n</math> be the greatest common divisor of <math>a_n</math> and <math>a_{n+1}</math>. Find the maximum value of <math>d_n</math> as <math>n</math> ranges through the [[positive integer]]s. | + | The numbers in the [[sequence]] <math>\displaystyle 101</math>, <math>\displaystyle 104</math>, <math>\displaystyle 109</math>, <math>\displaystyle 116</math>,<math>\displaystyle \ldots</math> are of the form <math>\displaystyle a_n=100+n^2</math>, where <math>\displaystyle n=1,2,3,\ldots</math> For each <math>\displaystyle n</math>, let <math>\displaystyle d_n</math> be the greatest common divisor of <math>\displaystyle a_n</math> and <math>\displaystyle a_{n+1}</math>. Find the maximum value of <math>\displaystyle d_n</math> as <math>\displaystyle n</math> ranges through the [[positive integer]]s. |
== Solution == | == Solution == |
Revision as of 18:55, 28 October 2006
Problem
The numbers in the sequence , , , , are of the form , where For each , let be the greatest common divisor of and . Find the maximum value of as ranges through the positive integers.
Solution
If denotes the greatest common divisor of and , then we have . Now assuming that divides , it must divide if it is going to divide the entire expression .
Thus the equation turns into . Now note that since is odd for integral , we can multiply the left integer, , by a multiple of two without affecting the greatest common divisor. Since the term is quite restrictive, let's multiply by so that we can get a in there.
So . It simplified the way we wanted it to! Now using similar techniques we can write . Thus must divide for every single . This means the largest possible value for is , and we see that it can be achieved when .