Difference between revisions of "2019 AIME I Problems/Problem 13"
(Note: I put my solution as Solution 1 as I feel like it has a diagram and is formatted well.) |
m |
||
Line 56: | Line 56: | ||
==Solution 3== | ==Solution 3== | ||
− | Construct <math>FC</math> and let <math>FC\cap AE=K</math>. Let <math>FK=x</math>. Using <math>\triangle FKE\sim \triangle BKC</math>, <cmath>BK=\frac{5}{7}x</cmath> Using <math>\triangle FDK\sim ACK</math>, it can be found | + | Construct <math>FC</math> and let <math>FC\cap AE=K</math>. Let <math>FK=x</math>. Using <math>\triangle FKE\sim \triangle BKC</math>, <cmath>BK=\frac{5}{7}x</cmath> Using <math>\triangle FDK\sim ACK</math>, it can be found that <cmath>3x=AK=4+\frac{5}{7}x\to x=\frac{7}{4}</cmath> This also means that <math>BK=\frac{21}{4}-4=\frac{5}{4}</math>. It suffices to find <math>KE</math>. It is easy to see the following: <cmath>180-\angle ABC=\angle KBC=\angle KFE</cmath> Using reverse Law of Cosines on <math>\triangle ABC</math>, <math>\cos{\angle ABC}=\frac{1}{8}\to \cos{180-\angle ABC}=\frac{-1}{8}</math>. Using Law of Cosines on <math>\triangle EFK</math> gives <math>KE=\frac{21\sqrt 2}{4}</math>, so <math>BE=\frac{5+21\sqrt 2}{4}\to \textbf{032}</math>. |
-franchester | -franchester | ||
Revision as of 22:58, 18 March 2019
Problem 13
Triangle has side lengths , , and . Points and are on ray with . The point is a point of intersection of the circumcircles of and satisfying and . Then can be expressed as , where , , , and are positive integers such that and are relatively prime, and is not divisible by the square of any prime. Find .
Solution 1
Notice that By the Law of Cosines, Then, Let , , and . Then, However, since , , but since , and the requested sum is .
(Solution by TheUltimate123)
Solution 2
Define to be the circumcircle of and to be the circumcircle of .
Because of exterior angles,
But because is cyclic. In addition, because is cyclic. Therefore, . But , so . Using Law of Cosines on , we can figure out that . Since , . We are given that and , so we can use Law of Cosines on to find that .
Let be the intersection of segment and . Using Power of a Point with respect to within , we find that . We can also apply Power of a Point with respect to within to find that . Therefore, .
Note that is similar to . . Also note that is similar to , which gives us . Solving this system of linear equations, we get . Now, we can solve for , which is equal to . This simplifies to , which means our answer is .
Solution 3
Construct and let . Let . Using , Using , it can be found that This also means that . It suffices to find . It is easy to see the following: Using reverse Law of Cosines on , . Using Law of Cosines on gives , so . -franchester
See Also
2019 AIME I (Problems • Answer Key • Resources) | ||
Preceded by Problem 12 |
Followed by Problem 14 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.