Difference between revisions of "2019 AIME I Problems/Problem 6"

(Solution 1)
(Solution (Similar triangles))
Line 40: Line 40:
 
</asy>
 
</asy>
  
First, let <math>P</math> be the intersection of <math>LO</math> and <math>KN</math>. Note that <math>m\angle KPL = 90^{\circ}</math> as given in the problem. Since <math>\angle KPL \cong \angle KLN</math> and <math>\angle PKL \cong \angle LKN</math>, <math>\triangle PKL \sim \triangle LKN</math> by AA similarity. Similarly, <math>\triangle KMN \sim \triangle KPO</math>.
+
First, let <math>P</math> be the intersection of <math>LO</math> and <math>KN</math> as shown above. Note that <math>m\angle KPL = 90^{\circ}</math> as given in the problem. Since <math>\angle KPL \cong \angle KLN</math> and <math>\angle PKL \cong \angle LKN</math>, <math>\triangle PKL \sim \triangle LKN</math> by AA similarity. Similarly, <math>\triangle KMN \sim \triangle KPO</math>. Using these similarities we see that
 +
<cmath>\frac{KP}{KL} = \frac{KL}{KN}</cmath>
 +
<cmath>KP = \frac{KL^2}{KN} = \frac{28^2}{KN} = \frac{784}{KN}</cmath>
 +
and
 +
<cmath>\frac{KP}{KO} = \frac{KM}{KN}</cmath>
 +
<cmath>KP = \frac{KO \cdot KM}{KN} = \frac{8\cdot KM}{KN}</cmath>
 +
Combining the two equations, we get
 +
<cmath>\frac{8\cdot KM}{KN} = \frac{784}{KN}</cmath>
 +
<cmath>8 \cdot KM = 28^2</cmath>
 +
<cmath>KM = 98</cmath>
 +
Since <math>KM = KO + MO</math>, we get <math>MO = 98 -8 = \boxed{090}</math>.
 +
 
 +
Solution by vedadehhc
  
 
==Solution 2 (Similar triangles, orthocenters)==
 
==Solution 2 (Similar triangles, orthocenters)==

Revision as of 18:06, 15 March 2019

Problem 6

In convex quadrilateral $KLMN$ side $\overline{MN}$ is perpendicular to diagonal $\overline{KM}$, side $\overline{KL}$ is perpendicular to diagonal $\overline{LN}$, $MN = 65$, and $KL = 28$. The line through $L$ perpendicular to side $\overline{KN}$ intersects diagonal $\overline{KM}$ at $O$ with $KO = 8$. Find $MO$.

Solution

Let $\angle MKN=\alpha$ and $\angle LNK=\beta$. Note $\angle KLP=\beta$.

Then, $KP=28\sin\beta=8\cos\alpha$. Furthermore, $KN=\frac{65}{\sin\alpha}=\frac{28}{\sin\beta} \Rightarrow 65\sin\beta=28\sin\alpha$.

Dividing the equations gives \[\frac{65}{28}=\frac{28\sin\alpha}{8\cos\alpha}=\frac{7}{2}\tan\alpha\Rightarrow \tan\alpha=\frac{65}{98}\]

Thus, $MK=\frac{MN}{\tan\alpha}=98$, so $MO=MK-KO=\boxed{090}$.

Solution (Similar triangles)

(writing this, don't edit) [asy] size(250); real h = sqrt(98^2+65^2); real l = sqrt(h^2-28^2); pair K = (0,0); pair N = (h, 0); pair M = ((98^2)/h, (98*65)/h); pair L = ((28^2)/h, (28*l)/h); pair P = ((28^2)/h, 0); pair O = ((28^2)/h, (8*65)/h); draw(K--L--N); draw(K--M--N--cycle); draw(L--M); label("K", K, SW); label("L", L, NW); label("M", M, NE); label("N", N, SE); draw(L--P); label("P", P, S); dot(O); label("O", shift((1,1))*O, NNE); label("28", scale(1/2)*L, W); label("65", ((M.x+N.x)/2, (M.y+N.y)/2), NE); [/asy]

First, let $P$ be the intersection of $LO$ and $KN$ as shown above. Note that $m\angle KPL = 90^{\circ}$ as given in the problem. Since $\angle KPL \cong \angle KLN$ and $\angle PKL \cong \angle LKN$, $\triangle PKL \sim \triangle LKN$ by AA similarity. Similarly, $\triangle KMN \sim \triangle KPO$. Using these similarities we see that \[\frac{KP}{KL} = \frac{KL}{KN}\] \[KP = \frac{KL^2}{KN} = \frac{28^2}{KN} = \frac{784}{KN}\] and \[\frac{KP}{KO} = \frac{KM}{KN}\] \[KP = \frac{KO \cdot KM}{KN} = \frac{8\cdot KM}{KN}\] Combining the two equations, we get \[\frac{8\cdot KM}{KN} = \frac{784}{KN}\] \[8 \cdot KM = 28^2\] \[KM = 98\] Since $KM = KO + MO$, we get $MO = 98 -8 = \boxed{090}$.

Solution by vedadehhc

Solution 2 (Similar triangles, orthocenters)

Extend $KL$ and $NM$ past $L$ and $M$ respectively to meet at $P$. Let $H$ be the intersection of diagonals $KM$ and $LN$ (this is the orthocenter of $\triangle KNP$).

As $\triangle KOL \sim \triangle KHP$ (as $LO \parallel PH$, using the fact that $H$ is the orthocenter), we may let $OH = 8k$ and $LP = 28k$.

Then using similarity with triangles $\triangle KLH$ and $\triangle KMP$ we have

\[\frac{28}{8+8k} = \frac{8+8k+HM}{28+28k}\]

Cross-multiplying and dividing by $4+4k$ gives $2(8+8k+HM) = 28 \cdot 7 = 196$ so $MO = 8k + HM = \frac{196}{2} - 8 = \boxed{090}$. (Solution by scrabbler94)

Video Solution

Video Solution: https://www.youtube.com/watch?v=0AXF-5SsLc8

See Also

2019 AIME I (ProblemsAnswer KeyResources)
Preceded by
Problem 5
Followed by
Problem 7
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png