Difference between revisions of "1970 Canadian MO Problems/Problem 9"

(Problem)
Line 1: Line 1:
== Problem ==
+
== Problem 9 ==
 +
Let <math>f(n)</math> be the sum of the first <math>n</math> terms of the sequence
 +
<cmath> 0, 1,1, 2,2, 3,3, 4,4, 5,5, 6,6, \ldots\, .  </cmath>
 +
a) Give a formula for <math>f(n)</math>.
  
Let <math>f(n)</math> be the sum of the first <math>n</math> terms of the sequence 0, 1,1, 2,2, 3,3, 4,4, 5,5, 6,6, \ldots\, . a) Give a formula for <math>f(n)</math>.
+
b) Prove that <math>f(s+t)-f(s-t)=st</math> where <math>s</math> and <math>t</math> are positive integers and <math>s>t</math>.
b) Prove that <math>f(s+t)-f(s-t)=s</math>t where <math>s</math> and <math>t</math> are positive integers and <math>s>t</math>.
 
  
 
== Solution ==
 
== Solution ==
 +
 +
'''Part a):'''
 +
 +
 +
 +
Tomas Diaz. orders@tomasdiaz.com
 +
 +
{{alternate solutions}}

Revision as of 22:13, 27 November 2023

Problem 9

Let $f(n)$ be the sum of the first $n$ terms of the sequence \[0, 1,1, 2,2, 3,3, 4,4, 5,5, 6,6, \ldots\, .\] a) Give a formula for $f(n)$.

b) Prove that $f(s+t)-f(s-t)=st$ where $s$ and $t$ are positive integers and $s>t$.

Solution

Part a):


Tomas Diaz. orders@tomasdiaz.com

Alternate solutions are always welcome. If you have a different, elegant solution to this problem, please add it to this page.