Difference between revisions of "2017 AMC 10B Problems/Problem 23"
Stormersyle (talk | contribs) (→Solution 3) |
(→See Also) |
||
Line 21: | Line 21: | ||
{{AMC10 box|year=2017|ab=B|num-b=22|num-a=24}} | {{AMC10 box|year=2017|ab=B|num-b=22|num-a=24}} | ||
{{MAA Notice}} | {{MAA Notice}} | ||
− |
Revision as of 18:00, 28 February 2019
Problem 23
Let be the -digit number that is formed by writing the integers from to in order, one after the other. What is the remainder when is divided by ?
Solution
We only need to find the remainders of N when divided by 5 and 9 to determine the answer. By inspection, . The remainder when is divided by is , but since , we can also write this as , which has a remainder of 0 mod 9. Therefore, by inspection, the answer is .
Note: the sum of the digits of is .
Solution 2
Noting the solution above, we try to find the sum of the digits to figure out its remainder when divided by . From thru , the sum is . thru , the sum is , thru is , and thru is . Thus the sum of the digits is , and thus is divisible by . Now, refer to the above solution. and . From this information, we can conclude that and . Therefore, and so the remainder is
Solution 3
Because a number is equivalent to the sum of its digits modulo 9, we have that . Furthermore, we see that ends in the digit 5 and thus is divisible by 5, so is divisible by 45, meaning the remainder is -Stormersyle
See Also
2017 AMC 10B (Problems • Answer Key • Resources) | ||
Preceded by Problem 22 |
Followed by Problem 24 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.