Difference between revisions of "2012 AIME II Problems/Problem 10"
m (→Solution 2) |
m (→Solution) |
||
Line 9: | Line 9: | ||
− | Let <math>x = a + \frac{b}{c}</math> where a,b,c are nonnegative integers and <math>0 \le b < c</math> (essentially, x is a mixed number). Then, | + | Let <math>x = a + \frac{b}{c}</math> where <math>a,b,c</math> are nonnegative integers and <math>0 \le b < c</math> (essentially, <math>x</math> is a mixed number). Then, |
− | + | <cmath>n = (a + \frac{b}{c}) \lfloor a +\frac{b}{c} \rfloor \Rightarrow n = (a + \frac{b}{c})a = a^2 + \frac{ab}{c}</cmath> | |
− | |||
− | < | ||
+ | Here it is sufficient for <math>\frac{ab}{c}</math> to be an integer. We can use casework to find values of n based on the value of a: | ||
<math>a = 0 \implies</math> nothing because n is positive | <math>a = 0 \implies</math> nothing because n is positive | ||
Line 24: | Line 23: | ||
− | The pattern continues up to <math>a = 31</math>. Note that if <math>a = 32</math>, then <math>n > 1000</math>. However if <math>a = 31</math>, the largest possible x is <math>31 + 30/31</math>, in which <math>n</math> is still less than <math>1000</math>. Therefore the number of positive integers for n is equal to <math>1+2+3+...+31 = \frac{31*32}{2} = \boxed{496. | + | The pattern continues up to <math>a = 31</math>. Note that if <math>a = 32</math>, then <math>n > 1000</math>. However if <math>a = 31</math>, the largest possible x is <math>31 + 30/31</math>, in which <math>n</math> is still less than <math>1000</math>. Therefore the number of positive integers for n is equal to <math>1+2+3+...+31 = \frac{31*32}{2} = \boxed{496}.</math> |
== Solution 2== | == Solution 2== |
Revision as of 12:34, 6 August 2020
Contents
Problem 10
Find the number of positive integers less than for which there exists a positive real number such that .
Note: is the greatest integer less than or equal to .
Solution
We know that cannot be irrational because the product of a rational number and an irrational number is irrational (but is an integer). Therefore is rational.
Let where are nonnegative integers and (essentially, is a mixed number). Then,
Here it is sufficient for to be an integer. We can use casework to find values of n based on the value of a:
nothing because n is positive
The pattern continues up to . Note that if , then . However if , the largest possible x is , in which is still less than . Therefore the number of positive integers for n is equal to
Solution 2
Notice that is continuous over the region for any integer . Therefore, it takes all values in the range over that interval. Note that if then and if , the maximum value attained is . It follows that the answer is
See Also
2012 AIME II (Problems • Answer Key • Resources) | ||
Preceded by Problem 9 |
Followed by Problem 11 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.