Difference between revisions of "2019 AMC 12B Problems/Problem 18"

Line 4: Line 4:
 
<math>\textbf{(A) } \frac{3\sqrt2}{2} \qquad\textbf{(B) } \frac{3\sqrt3}{2} \qquad\textbf{(C) } 2\sqrt2 \qquad\textbf{(D) } 2\sqrt3 \qquad\textbf{(E) } 3\sqrt2</math>
 
<math>\textbf{(A) } \frac{3\sqrt2}{2} \qquad\textbf{(B) } \frac{3\sqrt3}{2} \qquad\textbf{(C) } 2\sqrt2 \qquad\textbf{(D) } 2\sqrt3 \qquad\textbf{(E) } 3\sqrt2</math>
  
==Solution (Coordinate Bash)==
+
==Solution 1 (Coordinate Bash)==
  
Let <math>A(0, 0, 0), B(3, 0, 0), C(0, 3, 0), D(3, 3, 0),</math> and <math>E(0, 0, 6)</math>. We can figure out that <math>P(2, 0, 2), Q(0, 2, 2),</math> and <math>R(1, 1, 4)</math>.
+
Let <math>A(0, 0, 0), B(3, 0, 0), C(3, 3, 0), D(0, 3, 0),</math> and <math>E(0, 0, 6)</math>. We can figure out that <math>P(2, 0, 2), Q(0, 2, 2),</math> and <math>R(1, 1, 4)</math>.
  
 
Using the distance formula, <math>PQ = 2\sqrt{2}</math>, <math>PR = \sqrt{6}</math>, and <math>QR = \sqrt{6}</math>. Using Heron's formula or dropping an altitude from P to find the height, we can compute that the area of <math>\triangle{PQR}</math> is <math>\boxed{\textbf{(C) }2\sqrt{2}}</math>.
 
Using the distance formula, <math>PQ = 2\sqrt{2}</math>, <math>PR = \sqrt{6}</math>, and <math>QR = \sqrt{6}</math>. Using Heron's formula or dropping an altitude from P to find the height, we can compute that the area of <math>\triangle{PQR}</math> is <math>\boxed{\textbf{(C) }2\sqrt{2}}</math>.
  
==Alternative Finish (Vectors)==
+
===Alternative Finish (Vectors)===
  
 
Upon solving for <math>P,Q,</math> and <math>R</math>, we can find vectors <math>\overrightarrow{PQ}=</math><<math>-2,2,0</math>> and <math>\overrightarrow{PR}=</math><<math>-1,1,2</math>>, take the cross product's magnitude and divide by 2. Then the cross product equals <<math>4,4,0</math>> with magnitude <math>4\sqrt{2}</math>, yielding <math>\boxed{\textbf{(C) }2\sqrt{2}}</math>.
 
Upon solving for <math>P,Q,</math> and <math>R</math>, we can find vectors <math>\overrightarrow{PQ}=</math><<math>-2,2,0</math>> and <math>\overrightarrow{PR}=</math><<math>-1,1,2</math>>, take the cross product's magnitude and divide by 2. Then the cross product equals <<math>4,4,0</math>> with magnitude <math>4\sqrt{2}</math>, yielding <math>\boxed{\textbf{(C) }2\sqrt{2}}</math>.
 +
 +
===Faster way to compute area===
 +
 +
Once we get the coordinates of the desired triangle <math>P(2, 0, 2), Q(0, 2, 2),</math> and <math>R(1, 1, 4)</math>, we notice that the plane defined by these three points is perpendicular to the plane defined by <math>ABCD</math>. To see this, consider the 'bird's eye view' looking down upon <math>P</math>, <math>Q</math>, and <math>R</math> projected onto <math>ABCD</math>:
 +
<asy>
 +
unitsize(40);
 +
for(int i =0; i<=3; ++i) {
 +
draw((0,i)--(3,i));
 +
draw((i,0)--(i,3));
 +
}
 +
label("$A$", (0,0), SW);
 +
label("$B$", (3,0), SE);
 +
label("$C$", (3,3), NE);
 +
label("$D$", (0,3), NW);
 +
label("$P$", (2,0), S);
 +
label("$Q$", (0,2), W);
 +
label("$R$", (1,1), NE);
 +
dot((2,0));
 +
dot((0,2));
 +
dot((1,1));
 +
draw((0,2)--(2,0));
 +
</asy>
 +
Additionally, we know that <math>PQ</math> is parallel to the plane <math>ABCD</math> since <math>P</math> and <math>Q</math> have the same <math>z</math> coordinate. From this, we can conclude that the height of <math>\triangle PQR</math> is equal to <math>z</math> coordinate of <math>R - z</math> coordinate of <math>P = 4-2= 2</math>. We know that <math>\overline{PQ} = 2\sqrt{2}</math>, therefore the area of <math>\triangle PQR = \boxed{\textbf{(C) } 2\sqrt{2}}</math>.
  
 
==See Also==
 
==See Also==
 
{{AMC12 box|year=2019|ab=B|num-b=17|num-a=19}}
 
{{AMC12 box|year=2019|ab=B|num-b=17|num-a=19}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Revision as of 23:04, 14 February 2019

Problem

Square pyramid $ABCDE$ has base $ABCD$, which measures $3$ cm on a side, and altitude $AE$ perpendicular to the base, which measures $6$ cm. Point $P$ lies on $BE$, one third of the way from $B$ to $E$; point $Q$ lies on $DE$, one third of the way from $D$ to $E$; and point $R$ lies on $CE$, two thirds of the way from $C$ to $E$. What is the area, in square centimeters, of $\triangle{PQR}$?

$\textbf{(A) } \frac{3\sqrt2}{2} \qquad\textbf{(B) } \frac{3\sqrt3}{2} \qquad\textbf{(C) } 2\sqrt2 \qquad\textbf{(D) } 2\sqrt3 \qquad\textbf{(E) } 3\sqrt2$

Solution 1 (Coordinate Bash)

Let $A(0, 0, 0), B(3, 0, 0), C(3, 3, 0), D(0, 3, 0),$ and $E(0, 0, 6)$. We can figure out that $P(2, 0, 2), Q(0, 2, 2),$ and $R(1, 1, 4)$.

Using the distance formula, $PQ = 2\sqrt{2}$, $PR = \sqrt{6}$, and $QR = \sqrt{6}$. Using Heron's formula or dropping an altitude from P to find the height, we can compute that the area of $\triangle{PQR}$ is $\boxed{\textbf{(C) }2\sqrt{2}}$.

Alternative Finish (Vectors)

Upon solving for $P,Q,$ and $R$, we can find vectors $\overrightarrow{PQ}=$<$-2,2,0$> and $\overrightarrow{PR}=$<$-1,1,2$>, take the cross product's magnitude and divide by 2. Then the cross product equals <$4,4,0$> with magnitude $4\sqrt{2}$, yielding $\boxed{\textbf{(C) }2\sqrt{2}}$.

Faster way to compute area

Once we get the coordinates of the desired triangle $P(2, 0, 2), Q(0, 2, 2),$ and $R(1, 1, 4)$, we notice that the plane defined by these three points is perpendicular to the plane defined by $ABCD$. To see this, consider the 'bird's eye view' looking down upon $P$, $Q$, and $R$ projected onto $ABCD$: [asy] unitsize(40); for(int i =0; i<=3; ++i) { draw((0,i)--(3,i)); draw((i,0)--(i,3)); } label("$A$", (0,0), SW); label("$B$", (3,0), SE); label("$C$", (3,3), NE); label("$D$", (0,3), NW); label("$P$", (2,0), S); label("$Q$", (0,2), W); label("$R$", (1,1), NE); dot((2,0)); dot((0,2)); dot((1,1)); draw((0,2)--(2,0)); [/asy] Additionally, we know that $PQ$ is parallel to the plane $ABCD$ since $P$ and $Q$ have the same $z$ coordinate. From this, we can conclude that the height of $\triangle PQR$ is equal to $z$ coordinate of $R - z$ coordinate of $P = 4-2= 2$. We know that $\overline{PQ} = 2\sqrt{2}$, therefore the area of $\triangle PQR = \boxed{\textbf{(C) } 2\sqrt{2}}$.

See Also

2019 AMC 12B (ProblemsAnswer KeyResources)
Preceded by
Problem 17
Followed by
Problem 19
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png