Difference between revisions of "2019 AMC 12B Problems/Problem 14"

(previous answer was incorrect)
(Redirected page to 2019 AMC 10B Problems/Problem 19)
(Tag: New redirect)
 
Line 1: Line 1:
==Problem==
+
#REDIRECT[[2019_AMC_10B_Problems/Problem_19]]
 
 
Let <math>S</math> be the set of all positive integer divisors of <math>100,000.</math> How many numbers are the product of two distinct elements of <math>S?</math>
 
 
 
<math>\textbf{(A) }98\qquad\textbf{(B) }100\qquad\textbf{(C) }117\qquad\textbf{(D) }119\qquad\textbf{(E) }121</math>
 
 
 
==Solution==
 
 
 
The prime factorization of 100,000 is <math>2^5 \cdot 5^5</math>. Thus, we choose two numbers <math>2^a5^b</math> and <math>2^c5^d</math> where <math>0 \le a,b,c,d \le 5</math> and <math>(a,b) \neq (c,d)</math>, whose product is <math>2^{a+c}5^{b+d}</math>, where <math>0 \le a+c \le 10</math> and <math>0 \le b+d \le 10</math>.
 
 
 
Consider <math>100000^2 = 2^{10}5^{10}</math>. The number of divisors is <math>(10+1)(10+1) = 121</math>. However, some of the divisors of <math>2^{10}5^{10}</math> cannot be written as a product of two distinct divisors of <math>2^5 \cdot 5^5</math>, namely: <math>1 = 2^05^0</math>, <math>2^{10}5^{10}</math>, <math>2^{10}</math>, and <math>5^{10}</math>. This gives <math>121-4 = 117</math> candidate numbers. It is not too hard to show that every number of the form <math>2^p5^q</math> where <math>0 \le p, q \le 10</math>, and <math>p,q</math> are not both 0 or 10, can be written as a product of two distinct elements in <math>S</math>. Hence the answer is <math>\boxed{\textbf{(C) } 117}</math>.
 
 
 
-scrabbler94
 
 
 
==See Also==
 
{{AMC12 box|year=2019|ab=B|num-b=13|num-a=15}}
 

Latest revision as of 17:03, 14 February 2019