Difference between revisions of "2019 AMC 10B Problems/Problem 4"
Ironicninja (talk | contribs) |
Ironicninja (talk | contribs) (→Solution) |
||
Line 11: | Line 11: | ||
If all lines satisfy the equation, then we can just plug in values for a, b, and c that form an arithmetic progression. Let's do a=1, b=2, c=3 and a=1, b=3, and c=5. Then the two lines we get are: <cmath>x+2y=3</cmath> <cmath>x+3y=5</cmath> | If all lines satisfy the equation, then we can just plug in values for a, b, and c that form an arithmetic progression. Let's do a=1, b=2, c=3 and a=1, b=3, and c=5. Then the two lines we get are: <cmath>x+2y=3</cmath> <cmath>x+3y=5</cmath> | ||
Use elimination: <cmath>y = 2</cmath> Plug this into one of the previous lines. <cmath>x+4 = 3 \Rightarrow x=-1</cmath> Thus the common point is <math>\boxed{A) (-1,2)}</math> | Use elimination: <cmath>y = 2</cmath> Plug this into one of the previous lines. <cmath>x+4 = 3 \Rightarrow x=-1</cmath> Thus the common point is <math>\boxed{A) (-1,2)}</math> | ||
+ | |||
+ | iron |
Revision as of 13:49, 14 February 2019
All lines with equation such that form an arithmetic progression pass through a common point. What are the coordinates of that point?
Solution
If all lines satisfy the equation, then we can just plug in values for a, b, and c that form an arithmetic progression. Let's do a=1, b=2, c=3 and a=1, b=3, and c=5. Then the two lines we get are: Use elimination: Plug this into one of the previous lines. Thus the common point is
iron