Difference between revisions of "2019 AMC 10A Problems/Problem 19"

(Fixed formatting and grammar)
Line 7: Line 7:
  
 
==Solution==
 
==Solution==
Grouping the first and last terms and two middle terms gives <math>(x^2+5x+4)(x^2+5x+6)+2019</math> which can be simplified as <math>(x^2+5x+5)^2-1+2019</math>. Since squares are nonnegative, the answer is <math>\boxed{(B) 2018}</math>
+
Grouping the first and last terms and two middle terms gives <math>(x^2+5x+4)(x^2+5x+6)+2019</math>, which can be simplified as <math>(x^2+5x+5)^2-1+2019</math>. Since squares are nonnegative, the answer is <math>\boxed{\textbf{(B) } 2018}</math>.
  
 
==Solution 2==
 
==Solution 2==
  
Let <math>a=x+\tfrac{5}{2}</math>. Then <math>(x+1)(x+2)(x+3)(x+4)</math> becomes <math>(a-\tfrac{3}{2})(a-\tfrac{1}{2})(a+\tfrac{1}{2})(a+\tfrac{3}{2})</math>
+
Let <math>a=x+\tfrac{5}{2}</math>. Then <math>(x+1)(x+2)(x+3)(x+4)</math> becomes <math>(a-\tfrac{3}{2})(a-\tfrac{1}{2})(a+\tfrac{1}{2})(a+\tfrac{3}{2})</math>.
 
 
  
 
We can use difference of squares to get <math>(a^2-\tfrac{9}{4})(a^2-\tfrac{1}{4})</math>, and expand this to get <math>a^4-\tfrac{5}{2}a+\tfrac{9}{16}</math>.
 
We can use difference of squares to get <math>(a^2-\tfrac{9}{4})(a^2-\tfrac{1}{4})</math>, and expand this to get <math>a^4-\tfrac{5}{2}a+\tfrac{9}{16}</math>.
  
 
+
Refactor this by completing the square to get <math>(a^2-\tfrac{5}{4})^2-1</math>, which has a minimum value of <math>-1</math>. The answer is thus <math>2019-1=\boxed{2018}</math>.
Refactor this by completing the square to get <math>(a^2-\tfrac{5}{4})^2-1</math>, which has a minimum value of <math>-1</math>. The answer is thus <math>2019-1=\boxed{2018}</math>  
 
  
 
-WannabeCharmander
 
-WannabeCharmander
Line 25: Line 23:
 
Similar to Solution 1, grouping the first and last terms and the middle terms, we get <math>(x^2+5x+4)(x^2+5x+6)+2019</math>.  
 
Similar to Solution 1, grouping the first and last terms and the middle terms, we get <math>(x^2+5x+4)(x^2+5x+6)+2019</math>.  
  
Letting <math>y=x^2+5x</math>, we get the expression <math>(y+4)(y+6)+2019</math>. Now, we can find the critical points of <math>(y+4)(y+6)</math> to minimize the function.
+
Letting <math>y=x^2+5x</math>, we get the expression <math>(y+4)(y+6)+2019</math>. Now, we can find the critical points of <math>(y+4)(y+6)</math> to minimize the function:
  
 
<math>\frac{d}{dx}(y^2+10y+24)=0</math>
 
<math>\frac{d}{dx}(y^2+10y+24)=0</math>
Line 35: Line 33:
 
<math>y=-5,0</math>
 
<math>y=-5,0</math>
  
To minimize the result, we use <math>y=-5</math>. Hence, the minimum is <math>(-5+4)(-5+6)=-1</math>, so <math>-1+2019 = \boxed{\textbf{(B) }2018}</math>
+
To minimize the result, we use <math>y=-5</math>. Hence, the minimum is <math>(-5+4)(-5+6)=-1</math>, so <math>-1+2019 = \boxed{\textbf{(B) }2018}</math>.
  
 
(inspired by solution by oO8715_alexOo)
 
(inspired by solution by oO8715_alexOo)
  
Note: The minimum/maximum of a parabola occurs at <math>x=-b/2a</math>.
+
Note: The minimum/maximum of a parabola occurs at <math>x=-\frac{b}{2a}</math>.
  
 
==Solution 4==
 
==Solution 4==

Revision as of 18:56, 10 February 2019

Problem

What is the least possible value of \[(x+1)(x+2)(x+3)(x+4)+2019\]where $x$ is a real number?

$\textbf{(A) } 2017 \qquad\textbf{(B) } 2018 \qquad\textbf{(C) } 2019 \qquad\textbf{(D) } 2020 \qquad\textbf{(E) } 2021$

Solution

Grouping the first and last terms and two middle terms gives $(x^2+5x+4)(x^2+5x+6)+2019$, which can be simplified as $(x^2+5x+5)^2-1+2019$. Since squares are nonnegative, the answer is $\boxed{\textbf{(B) } 2018}$.

Solution 2

Let $a=x+\tfrac{5}{2}$. Then $(x+1)(x+2)(x+3)(x+4)$ becomes $(a-\tfrac{3}{2})(a-\tfrac{1}{2})(a+\tfrac{1}{2})(a+\tfrac{3}{2})$.

We can use difference of squares to get $(a^2-\tfrac{9}{4})(a^2-\tfrac{1}{4})$, and expand this to get $a^4-\tfrac{5}{2}a+\tfrac{9}{16}$.

Refactor this by completing the square to get $(a^2-\tfrac{5}{4})^2-1$, which has a minimum value of $-1$. The answer is thus $2019-1=\boxed{2018}$.

-WannabeCharmander

Solution 3 (using calculus)

Similar to Solution 1, grouping the first and last terms and the middle terms, we get $(x^2+5x+4)(x^2+5x+6)+2019$.

Letting $y=x^2+5x$, we get the expression $(y+4)(y+6)+2019$. Now, we can find the critical points of $(y+4)(y+6)$ to minimize the function:

$\frac{d}{dx}(y^2+10y+24)=0$

$2y+10=0$

$2y(y+5)=0$

$y=-5,0$

To minimize the result, we use $y=-5$. Hence, the minimum is $(-5+4)(-5+6)=-1$, so $-1+2019 = \boxed{\textbf{(B) }2018}$.

(inspired by solution by oO8715_alexOo)

Note: The minimum/maximum of a parabola occurs at $x=-\frac{b}{2a}$.

Solution 4

The expression is negative when an odd number of the factors are negative. This happens when $-2 < x < -1$ or $-4 < x -3$. Plugging in $x = -\frac32$ or $x = -\frac72$ yields $-\frac{15}{16}$, which is very close to $-1$. $-1 + 2019 = \boxed{\textbf{(B) }2018}$.

Video Solution

For those who want a video solution: https://www.youtube.com/watch?v=Mfa7j2BoNjI

See Also

2019 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 18
Followed by
Problem 20
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png