Difference between revisions of "2019 AMC 12A Problems/Problem 12"

(Solution)
(Solution)
Line 8: Line 8:
  
 
Let <math>\log_2{x} = \log_y{16}=k</math>, then <math>2^k=x</math> and <math>y^k=16 \implies y=2^{\frac{4}{k}}</math>. Then we have <math>(2^k)(2^{\frac{4}{k}})=2^{k+\frac{4}{k}}=2^6</math>.
 
Let <math>\log_2{x} = \log_y{16}=k</math>, then <math>2^k=x</math> and <math>y^k=16 \implies y=2^{\frac{4}{k}}</math>. Then we have <math>(2^k)(2^{\frac{4}{k}})=2^{k+\frac{4}{k}}=2^6</math>.
 +
  
 
We equate <math>k+\frac{4}{k}=6</math>, and get <math>k^2-6k+4=0</math>. The solutions to this are <math>3 \pm \sqrt{5}</math>.  
 
We equate <math>k+\frac{4}{k}=6</math>, and get <math>k^2-6k+4=0</math>. The solutions to this are <math>3 \pm \sqrt{5}</math>.  
 +
  
 
To solve the given, <math>(\log_2\tfrac{x}{y})^2=(\log_2 x - \log_2 y)^2=(k-\tfrac{4}{k})^2=(3 \pm \sqrt{5} - \tfrac{4}{3 \pm \sqrt{5}})^2 = (3 \pm \sqrt{5} - 3 \mp \sqrt{5})^2= (\pm 2\sqrt{5})^2 = \boxed{20}</math>
 
To solve the given, <math>(\log_2\tfrac{x}{y})^2=(\log_2 x - \log_2 y)^2=(k-\tfrac{4}{k})^2=(3 \pm \sqrt{5} - \tfrac{4}{3 \pm \sqrt{5}})^2 = (3 \pm \sqrt{5} - 3 \mp \sqrt{5})^2= (\pm 2\sqrt{5})^2 = \boxed{20}</math>

Revision as of 18:14, 9 February 2019

Problem

Positive real numbers $x \neq 1$ and $y \neq 1$ satisfy $\log_2{x} = \log_y{16}$ and $xy = 64$. What is $(\log_2{\tfrac{x}{y}})^2$?

$\textbf{(A) } \frac{25}{2} \qquad\textbf{(B) } 20 \qquad\textbf{(C) } \frac{45}{2} \qquad\textbf{(D) } 25 \qquad\textbf{(E) } 32$

Solution

Let $\log_2{x} = \log_y{16}=k$, then $2^k=x$ and $y^k=16 \implies y=2^{\frac{4}{k}}$. Then we have $(2^k)(2^{\frac{4}{k}})=2^{k+\frac{4}{k}}=2^6$.


We equate $k+\frac{4}{k}=6$, and get $k^2-6k+4=0$. The solutions to this are $3 \pm \sqrt{5}$.


To solve the given, $(\log_2\tfrac{x}{y})^2=(\log_2 x - \log_2 y)^2=(k-\tfrac{4}{k})^2=(3 \pm \sqrt{5} - \tfrac{4}{3 \pm \sqrt{5}})^2 = (3 \pm \sqrt{5} - 3 \mp \sqrt{5})^2= (\pm 2\sqrt{5})^2 = \boxed{20}$

-WannabeCharmander

See Also

2019 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 11
Followed by
Problem 13
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png