Difference between revisions of "2019 AMC 10A Problems/Problem 5"
(Created page with "==Problem 5== What is the greatest number of consecutive integers whose sum is <math>45 ?</math> <math>\textbf{(A) } 9 \qquad\textbf{(B) } 25 \qquad\textbf{(C) } 45 \qquad\te...") |
|||
Line 1: | Line 1: | ||
− | ==Problem | + | {{duplicate|[[2019 AMC 10A Problems|2019 AMC 10A #5]] and [[2019 AMC 12A Problems|2019 AMC 12A #4]]}} |
− | What is the greatest number of consecutive integers whose sum is <math>45 ?</math> | + | |
+ | ==Problem== | ||
+ | What is the greatest number of consecutive integers whose sum is <math>45?</math> | ||
<math>\textbf{(A) } 9 \qquad\textbf{(B) } 25 \qquad\textbf{(C) } 45 \qquad\textbf{(D) } 90 \qquad\textbf{(E) } 120</math> | <math>\textbf{(A) } 9 \qquad\textbf{(B) } 25 \qquad\textbf{(C) } 45 \qquad\textbf{(D) } 90 \qquad\textbf{(E) } 120</math> | ||
Line 6: | Line 8: | ||
==Solution== | ==Solution== | ||
Note that every term in the sequence <math>-44, -43..., 44, 45</math> cancels out except <math>45</math>. This results in <math>\boxed{\textbf{(D) } 90 }</math> integers. | Note that every term in the sequence <math>-44, -43..., 44, 45</math> cancels out except <math>45</math>. This results in <math>\boxed{\textbf{(D) } 90 }</math> integers. | ||
+ | |||
+ | ==See Also== | ||
+ | |||
+ | {{AMC10 box|year=2019|ab=A|num-b=4|num-a=6}} | ||
+ | {{AMC12 box|year=2019|ab=A|num-b=3|num-a=5}} | ||
+ | {{MAA Notice}} |
Revision as of 16:43, 9 February 2019
- The following problem is from both the 2019 AMC 10A #5 and 2019 AMC 12A #4, so both problems redirect to this page.
Problem
What is the greatest number of consecutive integers whose sum is
Solution
Note that every term in the sequence cancels out except . This results in integers.
See Also
2019 AMC 10A (Problems • Answer Key • Resources) | ||
Preceded by Problem 4 |
Followed by Problem 6 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
2019 AMC 12A (Problems • Answer Key • Resources) | |
Preceded by Problem 3 |
Followed by Problem 5 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.