Difference between revisions of "2008 AMC 12A Problems/Problem 25"
m (→Solution 1) |
(→Solution 1) |
||
Line 21: | Line 21: | ||
Therefore, <math>a_1 + b_1 = \frac{1}{2^{97}} - \frac{1}{2^{98}} = \frac{1}{2^{98}} \Rightarrow D</math>. | Therefore, <math>a_1 + b_1 = \frac{1}{2^{97}} - \frac{1}{2^{98}} = \frac{1}{2^{98}} \Rightarrow D</math>. | ||
− | Shortcut: no answer has <math>3</math> in the numerator. So the point cannot have orientation <math>(2,4)</math> or <math>(-2,-4)</math>. Also there are no negative answers. Any other non-multiple of <math>90^\circ</math> rotation of <math>30n^\circ</math> would result in the need of radicals. So either it has orientation <math>(4,-2)</math> or <math>(-4,2)</math>. Both answers add up to <math>2</math>. Thus, <math>2/2^{99}=\boxed{\textbf{(D) }\frac{1}{2^{98}}}</math>. | + | [s]Shortcut: no answer has <math>3</math> in the numerator. So the point cannot have orientation <math>(2,4)</math> or <math>(-2,-4)</math>. Also there are no negative answers. Any other non-multiple of <math>90^\circ</math> rotation of <math>30n^\circ</math> would result in the need of radicals. So either it has orientation <math>(4,-2)</math> or <math>(-4,2)</math>. Both answers add up to <math>2</math>. Thus, <math>2/2^{99}=\boxed{\textbf{(D) }\frac{1}{2^{98}}}</math>.[/s] |
+ | Does not work as there are negative answers. | ||
==Solution 2 (algebra)== | ==Solution 2 (algebra)== |
Revision as of 16:00, 10 August 2019
Problem
A sequence , , , of points in the coordinate plane satisfies
for .
Suppose that . What is ?
Solution 1
This sequence can also be expressed using matrix multiplication as follows:
.
Thus, is formed by rotating counter-clockwise about the origin by and dilating the point's position with respect to the origin by a factor of .
So, starting with and performing the above operations times in reverse yields .
Rotating clockwise by yields . A dilation by a factor of yields the point .
Therefore, .
[s]Shortcut: no answer has in the numerator. So the point cannot have orientation or . Also there are no negative answers. Any other non-multiple of rotation of would result in the need of radicals. So either it has orientation or . Both answers add up to . Thus, .[/s] Does not work as there are negative answers.
Solution 2 (algebra)
Let . Then, we can begin to list out terms as follows:
We notice that the sequence follows the rule
We can now start listing out every third point, getting:
We can make two observations from this:
(1) In , the coefficient of and is
(2) The positioning of and , and their signs, cycle with every terms.
We know then that from (1), the coefficients of and in are both
We can apply (2), finding , so the positions and signs of and are the same in as they are in .
From this, we can get . We know that , so we get the following:
The answer is ..
See Also
2008 AMC 12A (Problems • Answer Key • Resources) | |
Preceded by Problem 24 |
Followed by Last question |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.