|
|
Line 1: |
Line 1: |
− | == It's me meljel lol == | + | == hi. == |
| | | |
− | <cmath> \begin{align*}
| + | if ur from hysb then bye |
− | ax^2 + bx + c &= 0\\
| |
− | a(x^2 + \frac bax + \frac ca) &= 0\\
| |
− | a({(x + \frac {b}{2a})}^2 - \frac{b^2}{4a^2} + \frac ca) &= 0\\
| |
− | {(x + \frac {b}{2a})}^2 - \frac{b^2}{4a^2} + \frac ca &= 0\\
| |
− | {(x + \frac {b}{2a})}^2 &= \frac{b^2}{4a^2} - \frac ca\\
| |
− | {(x + \frac {b}{2a})}^2 &= \frac{b^2}{4a^2} - \frac {4ac}{4a^2}\\
| |
− | {(x + \frac {b}{2a})}^2 &= \frac{b^2 - 4ac}{4a^2}\\
| |
− | x + \frac {b}{2a} &= \pm\sqrt{\frac{b^2 - 4ac}{4a^2}}\\
| |
− | x + \frac {b}{2a} &= \pm\frac{\sqrt{b^2 - 4ac}}{2a}\\
| |
− | x &= - \frac {b}{2a} \pm\frac{\sqrt{b^2 - 4ac}}{2a}\\
| |
− | x &= \frac{- b \pm \sqrt{b^2 - 4ac}}{2a}\\
| |
− | \end{align*}
| |
− | </cmath>
| |
| | | |
| == hihiihi == | | == hihiihi == |