Difference between revisions of "Multinomial Theorem"

Line 1: Line 1:
 +
The multinomial theorem states that
 +
 +
<math>(a_1+a_2+\cdots+a_x)^n=\sum_{k_1,k_2,\cdots,k_x}\binom{n}{k_1,k_2,\cdots,k_x}a_1^{k_1}a_2^{k_2}\cdots a_x^{k_x}</math>
 +
 +
where
 +
 +
<math>\binom{n}{k_1,k_2,\cdots,k_x}=\dfrac{n!}{k_1!k_2!\cdots k_x!}</math>
 +
 +
 
== Intermediate Problems ==
 
== Intermediate Problems ==
  

Revision as of 20:01, 24 September 2007

The multinomial theorem states that

$(a_1+a_2+\cdots+a_x)^n=\sum_{k_1,k_2,\cdots,k_x}\binom{n}{k_1,k_2,\cdots,k_x}a_1^{k_1}a_2^{k_2}\cdots a_x^{k_x}$

where

$\binom{n}{k_1,k_2,\cdots,k_x}=\dfrac{n!}{k_1!k_2!\cdots k_x!}$


Intermediate Problems


This article is a stub. Help us out by expanding it.