Difference between revisions of "2017 AMC 12A Problems/Problem 21"
Bochthenerd (talk | contribs) (→Solution 2 (If you are short on time)) |
(→Solution 2 (If you are short on time)) |
||
Line 38: | Line 38: | ||
-BochTheNerd | -BochTheNerd | ||
+ | |||
+ | == Solution 3 (If you are also short on time) == | ||
+ | |||
+ | By the Rational Root theorem, notice that we must have <math>x | a_0</math>. Since <math>a_0 \in S</math>, this implies that any <math>x</math> added must be a factor of a certain element in <math>S</math> before. This therefore implies that any <math>x</math>'s added must be a factor of <math>10</math>. Thus, the largest possible set is all the positive and negative factors of <math>10</math>, hence <math>\boxed{9}</math>. | ||
+ | |||
+ | Note: this solution is not a real solution because it does not show that each <math>x</math> actually works (basically we have found the maximum possible elements but we have not shown that there is a polynomial for each of them to work). | ||
==See Also== | ==See Also== | ||
{{AMC12 box|year=2017|ab=A|num-b=20|num-a=22}} | {{AMC12 box|year=2017|ab=A|num-b=20|num-a=22}} | ||
{{MAA Notice}} | {{MAA Notice}} |
Revision as of 00:29, 9 July 2019
Contents
Problem
A set is constructed as follows. To begin, . Repeatedly, as long as possible, if is an integer root of some polynomial for some , all of whose coefficients are elements of , then is put into . When no more elements can be added to , how many elements does have?
Solution
At first, .
At this point, no more elements can be added to . To see this, let
with each in . is a factor of , and is in , so has to be a factor of some element in . There are no such integers left, so there can be no more additional elements. has elements
Solution 2 (If you are short on time)
By Rational Root Theorem, the only rational roots for this function we're dealing with must be in the form , where and are co-prime, is a factor of and is a factor of . We can easily see is in because of has root . Since we want set to be as large as possible, we let and , and quickly see that all possible integer roots are , , , , plus the we started with, we get a total of elements
-BochTheNerd
Solution 3 (If you are also short on time)
By the Rational Root theorem, notice that we must have . Since , this implies that any added must be a factor of a certain element in before. This therefore implies that any 's added must be a factor of . Thus, the largest possible set is all the positive and negative factors of , hence .
Note: this solution is not a real solution because it does not show that each actually works (basically we have found the maximum possible elements but we have not shown that there is a polynomial for each of them to work).
See Also
2017 AMC 12A (Problems • Answer Key • Resources) | |
Preceded by Problem 20 |
Followed by Problem 22 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.