Difference between revisions of "Circumradius"

m (Proof)
(Theorem)
 
(21 intermediate revisions by 13 users not shown)
Line 1: Line 1:
{{stub}}
 
 
 
The '''circumradius''' of a [[cyclic]] [[polygon]] is the radius of the circumscribed circle of that polygon. For a triangle, it is the measure of the [[radius]] of the [[circle]] that [[circumscribe]]s the triangle. Since every triangle is [[cyclic]], every triangle has a circumscribed circle, or a [[circumcircle]].
 
The '''circumradius''' of a [[cyclic]] [[polygon]] is the radius of the circumscribed circle of that polygon. For a triangle, it is the measure of the [[radius]] of the [[circle]] that [[circumscribe]]s the triangle. Since every triangle is [[cyclic]], every triangle has a circumscribed circle, or a [[circumcircle]].
  
 
==Formula for a Triangle==
 
==Formula for a Triangle==
Let <math>a, b</math> and <math>c</math> denote the triangle's three sides and let <math>A</math> denote the area of the triangle. Then, the measure of the circumradius of the triangle is simply <math>R=\frac{abc}{4A}</math>. Also, <math>A=\frac{abc}{4R}</math>
+
Let <math>a, b</math> and <math>c</math> denote the triangle's three sides and let <math>A</math> denote the area of the triangle. Then, the measure of the circumradius of the triangle is simply <math>R=\frac{abc}{4A}</math>. This can be rewritten as <math>A=\frac{abc}{4R}</math>.
  
 
== Proof ==
 
== Proof ==
Line 35: Line 33:
 
We let <math>AB=c</math>, <math>BC=a</math>, <math>AC=b</math>, <math>BE=h</math>, and <math>BO=R</math>. We know that <math>\angle BAD</math> is a right angle because <math>BD</math> is the diameter. Also, <math>\angle ADB = \angle BCA</math> because they both subtend arc <math>AB</math>. Therefore, <math>\triangle BAD \sim \triangle BEC</math> by AA similarity, so we have
 
We let <math>AB=c</math>, <math>BC=a</math>, <math>AC=b</math>, <math>BE=h</math>, and <math>BO=R</math>. We know that <math>\angle BAD</math> is a right angle because <math>BD</math> is the diameter. Also, <math>\angle ADB = \angle BCA</math> because they both subtend arc <math>AB</math>. Therefore, <math>\triangle BAD \sim \triangle BEC</math> by AA similarity, so we have
 
<cmath>\frac{BD}{BA} = \frac{BC}{BE},</cmath> or <cmath> \frac  {2R} c = \frac  ah.</cmath>
 
<cmath>\frac{BD}{BA} = \frac{BC}{BE},</cmath> or <cmath> \frac  {2R} c = \frac  ah.</cmath>
However, remember that area <math>\triangle ABC = \frac {bh} 2</math>, so <math>h=\frac{2 \times \text{Area}}b</math>. Substituting this in gives us
+
However, remember that <math>[ABC] = \frac {bh} 2\implies h=\frac{2 \times [ABC]}b</math>. Substituting this in gives us
<cmath> \frac  {2R} c = \frac  a{\frac{2 \times \text{Area}}b},</cmath> and then bash through the algebra to get
+
<cmath> \frac  {2R} c = \frac  a{\frac{2 \times [ABC]}b},</cmath> and then simplifying to get
<cmath> R=\frac{abc}{4\times \text{Area}},</cmath>
+
<cmath> R=\frac{abc}{4\times [ABC]}\text{ or }[ABC]=\frac{abc}{4R}</cmath>
 
and we are done.
 
and we are done.
  
 
==Formula for Circumradius==
 
==Formula for Circumradius==
 
<math>R = \frac{abc}{4rs}</math>
 
<math>R = \frac{abc}{4rs}</math>
Where <math>R</math> is the Circumradius, <math>r</math> is the inradius, and <math>a</math>, <math>b</math>, and <math>c</math> are the respective sides of the triangle and <math>s = (a+b+c)/2</math> is the semiperimeter. Note that this is similar to the previously mentioned formula; the reason being that <math>A = rs</math>.
+
Where <math>R</math> is the circumradius, <math>r</math> is the inradius, and <math>a</math>, <math>b</math>, and <math>c</math> are the respective sides of the triangle and <math>s = (a+b+c)/2</math> is the semiperimeter. Note that this is similar to the previously mentioned formula; the reason being that <math>A = rs</math>.
  
=====But if you don't know the inradius=====
+
But, if you don't know the inradius, you can find the area of the triangle by [[Heron's Formula|Heron’s Formula]]:
 
 
But, if you don't know the inradius, you can find the area of the triangle by Heron's Formula:
 
  
 
<math>A=\sqrt{s(s-a)(s-b)(s-c)}</math>
 
<math>A=\sqrt{s(s-a)(s-b)(s-c)}</math>
 +
==Circumradius, bisector and altitude==
 +
[[File:R H L angles.png|400px|right]]
 +
Circumradius and altitude are isogonals with respect bisector and vertex of triangle.
  
 
==Euler's Theorem for a Triangle==
 
==Euler's Theorem for a Triangle==
Line 54: Line 53:
  
 
==Proof==
 
==Proof==
 +
 +
See https://www.cut-the-knot.org/triangle/EulerIO.shtml
  
 
== Right triangles ==
 
== Right triangles ==
Line 65: Line 66:
 
draw(A--B--C--cycle);
 
draw(A--B--C--cycle);
 
I=circumcenter(A,B,C);
 
I=circumcenter(A,B,C);
 +
draw(I--A,gray);
 +
label("$r$",(I+A)/2,NW,gray);
 
draw(circumcircle(A,B,C));
 
draw(circumcircle(A,B,C));
 
label("$C$",I,N);
 
label("$C$",I,N);
Line 70: Line 73:
 
draw(rightanglemark(B,A,C,10));
 
draw(rightanglemark(B,A,C,10));
 
</asy>
 
</asy>
 +
 +
This results in a well-known theorem:
 +
===Theorem===
 +
The midpoint of the hypotenuse is equidistant from the vertices of the right triangle.
  
 
== Equilateral triangles ==
 
== Equilateral triangles ==
Line 96: Line 103:
 
<math>R=\frac{abc}{\sqrt{(a+b+c)(-a+b+c)(a-b+c)(a+b-c)}}</math>
 
<math>R=\frac{abc}{\sqrt{(a+b+c)(-a+b+c)(a-b+c)(a+b-c)}}</math>
  
And this formula comes from the area of Heron and <math>R=\frac{abc}{4A}</math>.
+
 
 +
Which follows from the Heron's Formula and <math>R=\frac{abc}{4A}</math>.
  
 
== If you know just one side and its opposite angle ==
 
== If you know just one side and its opposite angle ==
  
<math>2R=\frac{a}{\sin{A}}</math>
+
<math>2R=\frac{a}{\sin{A}}</math> by the [[Law of Sines]].
  
 
(Extended Law of Sines)
 
(Extended Law of Sines)

Latest revision as of 18:27, 17 September 2024

The circumradius of a cyclic polygon is the radius of the circumscribed circle of that polygon. For a triangle, it is the measure of the radius of the circle that circumscribes the triangle. Since every triangle is cyclic, every triangle has a circumscribed circle, or a circumcircle.

Formula for a Triangle

Let $a, b$ and $c$ denote the triangle's three sides and let $A$ denote the area of the triangle. Then, the measure of the circumradius of the triangle is simply $R=\frac{abc}{4A}$. This can be rewritten as $A=\frac{abc}{4R}$.

Proof

[asy] pair O, A, B, C, D; O=(0,0); A=(-5,1); B=(1,5); C=(5,1); dot(O); dot (A); dot (B); dot (C); draw(circle(O, sqrt(26))); draw(A--B--C--cycle); D=-B; dot (D); draw(B--D--A); label("$A$", A, W); label("$B$", B, N); label("$C$", C, E); label("$D$", D, S); label("$O$", O, W); pair E; E=foot(B,A,C); draw(B--E); dot(E); label("$E$", E, S); draw(rightanglemark(B,A,D,20)); draw(rightanglemark(B,E,C,20)); [/asy]


We let $AB=c$, $BC=a$, $AC=b$, $BE=h$, and $BO=R$. We know that $\angle BAD$ is a right angle because $BD$ is the diameter. Also, $\angle ADB = \angle BCA$ because they both subtend arc $AB$. Therefore, $\triangle BAD \sim \triangle BEC$ by AA similarity, so we have \[\frac{BD}{BA} = \frac{BC}{BE},\] or \[\frac  {2R} c = \frac  ah.\] However, remember that $[ABC] = \frac {bh} 2\implies h=\frac{2 \times [ABC]}b$. Substituting this in gives us \[\frac  {2R} c = \frac  a{\frac{2 \times [ABC]}b},\] and then simplifying to get \[R=\frac{abc}{4\times [ABC]}\text{ or }[ABC]=\frac{abc}{4R}\] and we are done.

Formula for Circumradius

$R =	\frac{abc}{4rs}$ Where $R$ is the circumradius, $r$ is the inradius, and $a$, $b$, and $c$ are the respective sides of the triangle and $s = (a+b+c)/2$ is the semiperimeter. Note that this is similar to the previously mentioned formula; the reason being that $A = rs$.

But, if you don't know the inradius, you can find the area of the triangle by Heron’s Formula:

$A=\sqrt{s(s-a)(s-b)(s-c)}$

Circumradius, bisector and altitude

R H L angles.png

Circumradius and altitude are isogonals with respect bisector and vertex of triangle.

Euler's Theorem for a Triangle

Let $\triangle ABC$ have circumcenter $O$ and incenter $I$.Then \[OI^2=R(R-2r) \implies R \geq 2r\]

Proof

See https://www.cut-the-knot.org/triangle/EulerIO.shtml

Right triangles

The hypotenuse of the triangle is the diameter of its circumcircle, and the circumcenter is its midpoint, so the circumradius is equal to half of the hypotenuse of the right triangle.

[asy] pair A,B,C,I; A=(0,0); B=(0,3); C=(4,0); draw(A--B--C--cycle); I=circumcenter(A,B,C); draw(I--A,gray); label("$r$",(I+A)/2,NW,gray); draw(circumcircle(A,B,C)); label("$C$",I,N); dot(I); draw(rightanglemark(B,A,C,10)); [/asy]

This results in a well-known theorem:

Theorem

The midpoint of the hypotenuse is equidistant from the vertices of the right triangle.

Equilateral triangles

$R=\frac{s}{\sqrt3}$

where $s$ is the length of a side of the triangle.

[asy] pair A,B,C,I; A=(0,0); B=(1,0); C=intersectionpoint(arc(A,1,0,90),arc(B,1,90,180)); draw(A--B--C--cycle); I=circumcenter(A,B,C); draw(circumcircle(A,B,C)); label("$C$",I,E); dot(I); label("$s$",A--B,S); label("$s$",A--C,N); label("$s$",B--C,N); [/asy]

If all three sides are known

$R=\frac{abc}{\sqrt{(a+b+c)(-a+b+c)(a-b+c)(a+b-c)}}$


Which follows from the Heron's Formula and $R=\frac{abc}{4A}$.

If you know just one side and its opposite angle

$2R=\frac{a}{\sin{A}}$ by the Law of Sines.

(Extended Law of Sines)

See also