Difference between revisions of "Mock AIME 1 2006-2007 Problems/Problem 7"
m |
Yojan sushi (talk | contribs) (→Solution) |
||
(4 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
==Problem== | ==Problem== | ||
− | + | Let <math>\triangle ABC</math> have <math>AC=6</math> and <math>BC=3</math>. Point <math>E</math> is such that <math>CE=1</math> and <math>AE=5</math>. Construct point <math>F</math> on segment <math>BC</math> such that <math>\angle AEB=\angle AFB</math>. <math>EF</math> and <math>AB</math> are extended to meet at <math>D</math>. If <math>\frac{[AEF]}{[CFD]}=\frac{m}{n}</math> where <math>m</math> and <math>n</math> are positive integers, find <math>m+n</math> (note: <math>[ABC]</math> denotes the area of <math>\triangle ABC</math>). | |
==Solution== | ==Solution== | ||
− | {{ | + | We can immediately see that quadrilateral <math>AEFB</math> is cyclic, since <math>\angle AEB=\angle AFB</math>. We then have, from Power of a Point, that <math>CE\cdot CA=CF\cdot CB</math>. In other words, <math>1\cdot 6 = CF\cdot 3</math>. <math>CF</math> is then 2, and <math>BF</math> is 1. We can now use Menelaus on line <math>DF</math> with respect to triangle <math>ABC</math>: |
+ | |||
+ | <cmath>\frac{AE}{EC}\cdot \frac{CF}{FB}\cdot \frac{BD}{DA}=1</cmath> | ||
+ | |||
+ | <cmath>\frac{5}{1}\cdot \frac{2}{1}\cdot \frac{BD}{DA}=1</cmath> | ||
+ | |||
+ | <cmath>\frac{BD}{DA}=\frac{1}{10}</cmath> | ||
+ | |||
+ | This shows that <math>\frac{BA}{BD}=9</math>. | ||
+ | |||
+ | Now let <math>[ABC]=x</math>, for some real <math>x</math>. Therefore <math>[CFA]=\frac{CF}{CB}\cdot [ABC]=\frac{2x}{3}</math>, and <math>[AEF]=\frac{AE}{AC}\cdot [CFA]=\frac{5}{6}\cdot \frac{2x}{3}=\frac{5x}{9}</math>. Similarly, <math>[CBD]=\frac{DB}{AB}\cdot [ABC]=\frac{x}{9}</math> and <math>[CFD]=\frac{CF}{CB}\cdot [CBD]=\frac{2}{3}\cdot \frac{x}{9}=\frac{2x}{27}</math>. The desired ratio is then | ||
+ | |||
+ | <cmath>\frac{[AEF]}{[CFD]}=\frac{\frac{5x}{9}}{\frac{2x}{27}}=\frac{5\cdot 27}{9\cdot 2}=\frac{15}{2}</cmath> | ||
+ | |||
+ | Therefore <math>m+n=\boxed{017}</math>. | ||
---- | ---- | ||
− | *[[Mock AIME 1 2006-2007/Problem 6 | Previous Problem]] | + | ==Alternate Solution== |
+ | As above, use Power of a Point to compute <math>CF=2</math> and <math>FB=1</math>. Since triangles <math>AFE</math> and <math>CEF</math> share the same height, <math>\frac{[AEF]}{[CFE]}=\frac{CE}{EA}=5</math>. Similarly, <math>\frac{[CFE]}{[CFD]}=\frac{EF}{FD}</math>. Using Menelaus's Theorem on points <math>E, F, D</math> on the sides of triangle <math>ABC</math>, we see that <cmath>\frac{AE}{EC}\cdot\frac{CF}{FB}\cdot\frac{BD}{DA}=1\implies \frac{AB}{BD}=9.</cmath>Let <math>X=AF\cap CD</math>. Using Ceva's Theorem on points <math>X, E, B</math> lying on the sides of triangle <math>ACD</math>, we find that <cmath>\frac{AE}{EC}\cdot\frac{CX}{XD}\cdot\frac{DB}{BA}=1\implies \frac{CX}{XD}=\frac{9}{5}.</cmath>Then, using Menelaus's Theorem on the points <math>A, F, X</math> on the sides of triangle <math>ECD</math>, we see that <cmath>\frac{EA}{AC}\cdot\frac{CX}{XD}\cdot\frac{DF}{FE}=1\implies \frac{DF}{FE}=\frac{2}{3}.</cmath> Thus, <math>\frac{[CFE]}{[CFD]}=\frac{3}{2},</math> so that <cmath>\frac{[AEF]}{[CFD]}=\frac{[AEF]}{[CFE]}\cdot\frac{[CFE]}{[CFD]}=5\cdot\frac{3}{2}=\frac{15}{2}=\frac{m}{n}\implies m+n=\boxed{17}.</cmath> | ||
+ | |||
+ | ---- | ||
+ | |||
+ | *[[Mock AIME 1 2006-2007 Problems/Problem 6 | Previous Problem]] | ||
− | *[[Mock AIME 1 2006-2007/Problem 8 | Next Problem]] | + | *[[Mock AIME 1 2006-2007 Problems/Problem 8 | Next Problem]] |
*[[Mock AIME 1 2006-2007]] | *[[Mock AIME 1 2006-2007]] |
Latest revision as of 15:54, 25 November 2015
Problem
Let have and . Point is such that and . Construct point on segment such that . and are extended to meet at . If where and are positive integers, find (note: denotes the area of ).
Solution
We can immediately see that quadrilateral is cyclic, since . We then have, from Power of a Point, that . In other words, . is then 2, and is 1. We can now use Menelaus on line with respect to triangle :
This shows that .
Now let , for some real . Therefore , and . Similarly, and . The desired ratio is then
Therefore .
Alternate Solution
As above, use Power of a Point to compute and . Since triangles and share the same height, . Similarly, . Using Menelaus's Theorem on points on the sides of triangle , we see that Let . Using Ceva's Theorem on points lying on the sides of triangle , we find that Then, using Menelaus's Theorem on the points on the sides of triangle , we see that Thus, so that