Difference between revisions of "Mock AIME 1 2006-2007 Problems/Problem 3"

m
 
(2 intermediate revisions by 2 users not shown)
Line 2: Line 2:
  
 
==Solution==
 
==Solution==
By the [[Law of Cosines]], <math>\cos A = \frac{3^2 + 1^2 - \sqrt{7}^2}{2\cdot3\cdot1} = \frac12</math>.  Since <math>A</math> is an [[angle]] in a [[triangle]] the only possibility is <math>A = \frac{\pi}{3}</math>.  Since <math>\gcd(3, 1000) = 1</math> we may apply [[Euler's totient theorem]]: <math>\phi(1000) = 400</math> so <math>3^{400} \equiv 1 \pmod{1000}</math> and so <math>3^{2000}\equiv 1 \pmod{1000}</math> and so <math>3^{2007} \equiv 3^7 </math> (not quite finished ... )
+
By the [[Law of Cosines]], <math>\cos A = \frac{3^2 + 1^2 - \sqrt{7}^2}{2\cdot3\cdot1} = \frac12</math>.  Since <math>A</math> is an [[angle]] in a [[triangle]] the only possibility is <math>A = \frac{\pi}{3}</math>.  Since <math>\gcd(3, 1000) = 1</math> we may apply [[Euler's totient theorem]]: <math>\phi(1000) = 400</math> so <math>3^{400} \equiv 1 \pmod{1000}</math> and so <math>3^{2000}\equiv 1 \pmod{1000}</math> and so <math>3^{2007} \equiv 3^7 \equiv 2187 \equiv 187 \pmod{1000}</math>
 
 
{{solution}}
 
  
 +
So the answer is <math>187</math>
 
----
 
----
  
*[[Mock AIME 1 2006-2007/Problem 2 | Previous Problem]]
+
*[[Mock AIME 1 2006-2007 Problems/Problem 2 | Previous Problem]]
  
*[[Mock AIME 1 2006-2007/Problem 4 | Next Problem]]
+
*[[Mock AIME 1 2006-2007 Problems/Problem 4 | Next Problem]]
  
 
*[[Mock AIME 1 2006-2007]]
 
*[[Mock AIME 1 2006-2007]]

Latest revision as of 14:53, 3 April 2012

Let $\triangle ABC$ have $BC=\sqrt{7}$, $CA=1$, and $AB=3$. If $\angle A=\frac{\pi}{n}$ where $n$ is an integer, find the remainder when $n^{2007}$ is divided by $1000$.

Solution

By the Law of Cosines, $\cos A = \frac{3^2 + 1^2 - \sqrt{7}^2}{2\cdot3\cdot1} = \frac12$. Since $A$ is an angle in a triangle the only possibility is $A = \frac{\pi}{3}$. Since $\gcd(3, 1000) = 1$ we may apply Euler's totient theorem: $\phi(1000) = 400$ so $3^{400} \equiv 1 \pmod{1000}$ and so $3^{2000}\equiv 1 \pmod{1000}$ and so $3^{2007} \equiv 3^7 \equiv 2187 \equiv 187 \pmod{1000}$

So the answer is $187$