Difference between revisions of "Euler's Four-Square Identity"

(Identity)
(Added quaternion norm interpretation of identity.)
 
(26 intermediate revisions by one other user not shown)
Line 1: Line 1:
 
==Identity==
 
==Identity==
''The product of the sum of the four squares is itself, the sum of four squares.''  
+
The '''Four-Square Identity''', credited to [[Leonhard Euler]], states that for any eight [[Number|numbers]] <math>x_1,x_2, x_3, x_4, y_1, y_2, y_3, y_4</math>, we must have <cmath>(x_1^2+ x_2^2 + x_3 ^2 + x_4^2)(y_1^2+y_2^2+y_3^2+y_4^2)</cmath> <cmath>=(x_1y_1+x_2y_2+x_3y_3+x_4y_4)^2</cmath> <cmath>+(x_1y_2-x_2y_1+x_3y_4-x_4y_3)^2</cmath> <cmath>+(x_1y_3-x_3y_1+x_4y_2-x_2y_4)^2</cmath> <cmath>+(x_1y_4-x_4y_1 + x_2y_3 - x_3y_2)^2.</cmath>
 +
(This statement can be easily verified by expansion.)
 +
In other words, ''the product of the sums of four squares is itself the sum of four squares''.
  
Mathematically, for any eight [[Complex numbers|complex numbers]] <math>x_1,x_2, x_3, x_4, y_1, y_2, y_3, y_4</math>, we must have <cmath>(x_1^2+ x_2^2 + x_3 ^2 + x_4^2)(y_1^2+y_2^2+y_3^2+y_4^2)=(x_1y_1+x_2y_2+x_3y_3+x^4y^4)^2</cmath> <cmath>\text{      }+hi</cmath>
+
==Quaternionic interpretation==
 +
Define <math>X := x_1 + x_2 i + x_3 j + x_4 k</math> and <math>Y: = y_1 + y_2 i + y_3 j + y_4 k</math>. Recall that the quaternion norm of a number <math>a + bi + cj + dk</math>, written as <math>|a + bi + cj + dk|^2</math>, is simply <math>a^2 + b^2 + c^2 + d^2</math>.
 +
 
 +
Then Euler's Four-Square Identity simply reads <math>|XY|^2 = |X|^2 |Y|^2</math>; i.e. the quaternion norm is multiplicative.
 +
 
 +
[[Category: Equations]]

Latest revision as of 22:24, 5 November 2019

Identity

The Four-Square Identity, credited to Leonhard Euler, states that for any eight numbers $x_1,x_2, x_3, x_4, y_1, y_2, y_3, y_4$, we must have \[(x_1^2+ x_2^2 + x_3 ^2 + x_4^2)(y_1^2+y_2^2+y_3^2+y_4^2)\] \[=(x_1y_1+x_2y_2+x_3y_3+x_4y_4)^2\] \[+(x_1y_2-x_2y_1+x_3y_4-x_4y_3)^2\] \[+(x_1y_3-x_3y_1+x_4y_2-x_2y_4)^2\] \[+(x_1y_4-x_4y_1 + x_2y_3 - x_3y_2)^2.\] (This statement can be easily verified by expansion.) In other words, the product of the sums of four squares is itself the sum of four squares.

Quaternionic interpretation

Define $X := x_1 + x_2 i + x_3 j + x_4 k$ and $Y: = y_1 + y_2 i + y_3 j + y_4 k$. Recall that the quaternion norm of a number $a + bi + cj + dk$, written as $|a + bi + cj + dk|^2$, is simply $a^2 + b^2 + c^2 + d^2$.

Then Euler's Four-Square Identity simply reads $|XY|^2 = |X|^2 |Y|^2$; i.e. the quaternion norm is multiplicative.