Difference between revisions of "1953 AHSME Problems/Problem 14"

(Created page with "==Problem 14== Given the larger of two circles with center <math>P</math> and radius <math>p</math> and the smaller with center <math>Q</math> and radius <math>q</math>. Draw...")
 
(Solution)
 
(10 intermediate revisions by the same user not shown)
Line 3: Line 3:
 
Given the larger of two circles with center <math>P</math> and radius <math>p</math> and the smaller with center <math>Q</math> and radius <math>q</math>. Draw <math>PQ</math>. Which of the following statements is false?  
 
Given the larger of two circles with center <math>P</math> and radius <math>p</math> and the smaller with center <math>Q</math> and radius <math>q</math>. Draw <math>PQ</math>. Which of the following statements is false?  
  
$\textbf{(A)}\ p-q\text{ can be equal to }\overline{PQ}\\  
+
<math>\textbf{(A)}\ p-q\text{ can be equal to }\overline{PQ}\\  
 
\textbf{(B)}\ p+q\text{ can be equal to }\overline{PQ}\\  
 
\textbf{(B)}\ p+q\text{ can be equal to }\overline{PQ}\\  
 
\textbf{(C)}\ p+q\text{ can be less than }\overline{PQ}\\  
 
\textbf{(C)}\ p+q\text{ can be less than }\overline{PQ}\\  
\textbf{(D)}\ p-q\text{ can be less than }\overline{PQ}\\ \textbf{(E)}\ \text{none of these}
+
\textbf{(D)}\ p-q\text{ can be less than }\overline{PQ}\\ \textbf{(E)}\ \text{none of these}  </math>
 +
 
 +
==Solution==
 +
 
 +
We will test each option to see if it can be true or not. Links to diagrams are provided.
 +
<cmath>\textbf{(A)}\ p-q\text{ can be equal to }\overline{PQ}</cmath>
 +
Let circle <math>Q</math> be inside circle <math>P</math> and tangent to circle <math>P</math>, and the point of tangency be <math>R</math>. <math>PR = p</math>, and <math>QR = q</math>, so <math>PR - QR = PQ = p-q.</math>
 +
<asy> pair P, Q, R; P = (0,0); Q = (3,0); R = (4,0); draw(Circle(P,4)); draw(Circle(Q,1)); draw(P--R); dot(P); dot(Q); dot(R); label("$P$",P,S); label("$Q$",Q,S); label("$R$",R,E); </asy>
 +
<cmath>\textbf{(B)}\ p+q\text{ can be equal to }\overline{PQ}</cmath>
 +
Let circle <math>Q</math> be outside circle <math>P</math> and tangent to circle <math>P</math>, and the point of tangency be <math>R</math>. <math>PR = p</math>, and <math>QR = q</math>, so <math>PR + QR = PQ = p+q.</math>
 +
<asy> pair P, Q, R; P = (0,0); Q = (5,0); R = (4,0); draw(Circle(P,4)); draw(Circle(Q,1)); draw(P--Q); dot(P); dot(Q); dot(R); label("$P$",P,S); label("$Q$",Q,S); label("$R$",R,SW); </asy>
 +
<cmath>\textbf{(C)}\ p+q\text{ can be less than }\overline{PQ}</cmath>
 +
Let circle <math>Q</math> be outside circle <math>P</math> and not tangent to circle <math>P</math>, and the intersection of <math>\overline{PQ}</math> with the circles be <math>R</math> and <math>S</math> respectively. <math>PR = p</math> and <math>QS = q</math>, and <math>PR + QS < PQ</math>, so <math>p+q < PQ.</math>
 +
<asy> pair P, Q, R, SS; P = (0,0); Q = (5,0); R = (3,0); SS = (4,0); draw(Circle(P,3)); draw(Circle(Q,1)); draw(P--Q); dot(P); dot(Q); dot(R); dot(SS); label("$P$",P,S); label("$Q$",Q,S); label("$R$",R,SW); label("$S$",SS,SW); </asy>
 +
<cmath>\textbf{(D)}\ p-q\text{ can be less than }\overline{PQ}</cmath>
 +
Let circle <math>Q</math> be inside circle <math>P</math> and not tangent to circle <math>P</math>, and the intersection of <math>\overline{PQ}</math> with the circles be <math>R</math> and <math>S</math> as shown in the diagram. <math>PR = p</math> and <math>QS = q</math>, and <math>QS < QR</math>, so <math>PR - QS < PR - QR</math>, and <math>PR - QR = PQ</math>, so <math>p-q < PQ.</math>
 +
<asy> pair P, Q, R, SS; P = (0,0); Q = (3,0); R = (6,0); SS = (4.5,0); draw(Circle(P,6)); draw(Circle(Q,1.5)); draw(P--R); dot(P); dot(Q); dot(R); dot(SS); label("$P$",P,S); label("$Q$",Q,S); label("$R$",R,SW); label("$S$",SS,SW); </asy>
 +
Since options A, B, C, and D can be true, the answer must be <math>\boxed{E}</math>.
 +
 
 +
==See Also==
 +
 
 +
{{AHSME 50p box|year=1953|num-b=13|num-a=15}}
 +
 
 +
[[Category:Introductory Algebra Problems]]
 +
{{MAA Notice}}

Latest revision as of 09:23, 19 July 2018

Problem 14

Given the larger of two circles with center $P$ and radius $p$ and the smaller with center $Q$ and radius $q$. Draw $PQ$. Which of the following statements is false?

$\textbf{(A)}\ p-q\text{ can be equal to }\overline{PQ}\\  \textbf{(B)}\ p+q\text{ can be equal to }\overline{PQ}\\  \textbf{(C)}\ p+q\text{ can be less than }\overline{PQ}\\  \textbf{(D)}\ p-q\text{ can be less than }\overline{PQ}\\ \textbf{(E)}\ \text{none of these}$

Solution

We will test each option to see if it can be true or not. Links to diagrams are provided. \[\textbf{(A)}\ p-q\text{ can be equal to }\overline{PQ}\] Let circle $Q$ be inside circle $P$ and tangent to circle $P$, and the point of tangency be $R$. $PR = p$, and $QR = q$, so $PR - QR = PQ = p-q.$ [asy] pair P, Q, R; P = (0,0); Q = (3,0); R = (4,0); draw(Circle(P,4)); draw(Circle(Q,1)); draw(P--R); dot(P); dot(Q); dot(R); label("$P$",P,S); label("$Q$",Q,S); label("$R$",R,E); [/asy] \[\textbf{(B)}\ p+q\text{ can be equal to }\overline{PQ}\] Let circle $Q$ be outside circle $P$ and tangent to circle $P$, and the point of tangency be $R$. $PR = p$, and $QR = q$, so $PR + QR = PQ = p+q.$ [asy] pair P, Q, R; P = (0,0); Q = (5,0); R = (4,0); draw(Circle(P,4)); draw(Circle(Q,1)); draw(P--Q); dot(P); dot(Q); dot(R); label("$P$",P,S); label("$Q$",Q,S); label("$R$",R,SW); [/asy] \[\textbf{(C)}\ p+q\text{ can be less than }\overline{PQ}\] Let circle $Q$ be outside circle $P$ and not tangent to circle $P$, and the intersection of $\overline{PQ}$ with the circles be $R$ and $S$ respectively. $PR = p$ and $QS = q$, and $PR + QS < PQ$, so $p+q < PQ.$ [asy] pair P, Q, R, SS; P = (0,0); Q = (5,0); R = (3,0); SS = (4,0); draw(Circle(P,3)); draw(Circle(Q,1)); draw(P--Q); dot(P); dot(Q); dot(R); dot(SS); label("$P$",P,S); label("$Q$",Q,S); label("$R$",R,SW); label("$S$",SS,SW); [/asy] \[\textbf{(D)}\ p-q\text{ can be less than }\overline{PQ}\] Let circle $Q$ be inside circle $P$ and not tangent to circle $P$, and the intersection of $\overline{PQ}$ with the circles be $R$ and $S$ as shown in the diagram. $PR = p$ and $QS = q$, and $QS < QR$, so $PR - QS < PR - QR$, and $PR - QR = PQ$, so $p-q < PQ.$ [asy] pair P, Q, R, SS; P = (0,0); Q = (3,0); R = (6,0); SS = (4.5,0); draw(Circle(P,6)); draw(Circle(Q,1.5)); draw(P--R); dot(P); dot(Q); dot(R); dot(SS); label("$P$",P,S); label("$Q$",Q,S); label("$R$",R,SW); label("$S$",SS,SW); [/asy] Since options A, B, C, and D can be true, the answer must be $\boxed{E}$.

See Also

1953 AHSC (ProblemsAnswer KeyResources)
Preceded by
Problem 13
Followed by
Problem 15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png