Difference between revisions of "1955 AHSME Problems/Problem 4"

(Solution)
(See Also)
 
(20 intermediate revisions by the same user not shown)
Line 6: Line 6:
  
 
==Solution==
 
==Solution==
 
 
From the equality, <math>\frac{1}{x-1}=\frac{2}{x-2}</math>, we get  <math>{(x-1)}\times2={(x-2)}\times1</math>.
 
From the equality, <math>\frac{1}{x-1}=\frac{2}{x-2}</math>, we get  <math>{(x-1)}\times2={(x-2)}\times1</math>.
  
 
Solving this, we get, <math>{2x-2}={x-2}</math>.
 
Solving this, we get, <math>{2x-2}={x-2}</math>.
  
Thus, \ \text{only }x=0<math> can satisfy the equation, </math>{(\E)}.
+
Thus, the answer is <math>\fbox{{\bf(E)} \text{only} x = 0}</math>.
 +
 
 +
Solution by awesomechoco
 +
 
 +
== See Also ==
 +
{{AHSME box|year=1955|num-b=3|num-a=5}}
 +
 
 +
{{MAA Notice}}

Latest revision as of 22:14, 9 July 2018

Problem

The equality $\frac{1}{x-1}=\frac{2}{x-2}$ is satisfied by:

$\textbf{(A)}\ \text{no real values of }x\qquad\textbf{(B)}\ \text{either }x=1\text{ or }x=2\qquad\textbf{(C)}\ \text{only }x=1\\ \textbf{(D)}\ \text{only }x=2\qquad\textbf{(E)}\ \text{only }x=0$

Solution

From the equality, $\frac{1}{x-1}=\frac{2}{x-2}$, we get ${(x-1)}\times2={(x-2)}\times1$.

Solving this, we get, ${2x-2}={x-2}$.

Thus, the answer is $\fbox{{\bf(E)} \text{only} x = 0}$.

Solution by awesomechoco

See Also

1955 AHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 3
Followed by
Problem 5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions


The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png