Difference between revisions of "Newton's Inequality"
(→Proof) |
Turtleman64 (talk | contribs) m (→Background) |
||
(3 intermediate revisions by 3 users not shown) | |||
Line 66: | Line 66: | ||
Note that <math>d_k = \frac{n-k}{n} {d'}_k + \frac{k}{n} {d'}_{k-1} x_m</math>. | Note that <math>d_k = \frac{n-k}{n} {d'}_k + \frac{k}{n} {d'}_{k-1} x_m</math>. | ||
− | + | <cmath> | |
− | d_{k-1}d_{k+1} = | + | d_{k-1}d_{k+1} = \left(\frac{n-k+1}{n} {d'}_{k-1} + \frac{k-1}{n} {d'}_{k-2} x_m \right)\left(\frac{n-k-1}{n} {d'}_{k+1} + \frac{k+1}{n} {d'}_k x_m \right) |
− | = | + | </cmath> |
− | + | <cmath> | |
− | \le | + | = \frac{(n-k+1)(n-k-1)}{n^2} {d'}_{k-1}{d'}_{k+1} + \frac{(k-1)(n-k-1)}{n^2} {d'}_{k-2} {d'}_{k+1} x_m |
− | + | </cmath> | |
− | \le | + | <cmath> |
− | + | + \frac{(n-k+1)(k+1)}{n^2} {d'}_{k-1}{d'}_k x_m + \frac{(k-1)(k+1)}{n^2} {d'}_{k-2}{d'}_k x_m^2 | |
− | = | + | </cmath> |
− | \le | + | <cmath> |
− | + | \le \frac{(n-k+1)(n-k-1)}{n^2} {d'}_k^2 + \frac{(k-1)(n-k-1)}{n^2} {d'}_{k-2} {d'}_{k+1} x_m | |
− | + | </cmath> | |
+ | <cmath> | ||
+ | + \frac{(n-k+1)(k+1)}{n^2} {d'}_{k-1}{d'}_k x_m + \frac{(k-1)(k+1)}{n^2} {d'}_{k-1}^2 x_m^2 | ||
+ | </cmath> | ||
+ | <cmath> | ||
+ | \le \frac{(n-k+1)(n-k-1)}{n^2} {d'}_k^2 + \frac{(k-1)(n-k-1)}{n^2} {d'}_{k-1} {d'}_{k} x_m | ||
+ | </cmath> | ||
+ | <cmath> | ||
+ | + \frac{(n-k+1)(k+1)}{n^2} {d'}_{k-1}{d'}_k x_m + \frac{(k-1)(k+1)}{n^2} {d'}_{k-1}^2 x_m^2 | ||
+ | </cmath> | ||
+ | <cmath> | ||
+ | = \frac{(n-k)^2}{n^2} {d'}_k^2 + \frac{2(n-k)k}{n^2} {d'}_k {d'}_{k-1} x_m +\frac{k^2}{n^2} {d'}_{k-1}^2 x_m^2 - \left(\frac{d_k}{n} - \frac{d_{k-1}x_m}{n}\right)^2 | ||
+ | </cmath> | ||
+ | <cmath> | ||
+ | \le \left(\frac{n-k}{n} {d'}_k + \frac{k}{n} {d'}_{k-1} x_m \right)^2 = d_k^2 | ||
+ | </cmath> | ||
+ | By induction this completes the proof. | ||
== See Also == | == See Also == | ||
− | |||
* [[Inequality]] | * [[Inequality]] | ||
+ | * [[Maclaurin's Inequality]] | ||
− | + | [[Category:Algebra]] | |
− | + | [[Category:Inequalities]] | |
− | [[Category: | ||
− | |||
− | [[Category: |
Latest revision as of 03:05, 28 January 2023
Contents
Background
For , we define the symmetric sum to be the coefficient of in the polynomial (see Viete's sums). We define the symmetric average to be .
Statement
For non-negative and ,
,
with equality exactly when all the are equal.
Proof
Lemma. For real , there exist real with the same symmetric averages .
Proof. We consider the derivative of . The roots of are . Without loss of generality, we assume that the increase as increases. Now for any , must have a root between and by Rolle's theorem if , and if , then is a root of times, so it must be a root of times. It follows that must have non-positive, real roots, i.e., for some non-negative reals ,
.
It follows that the symmetric sum for is , so the symmetric average .
Thus to prove Newton's theorem, it is sufficient to prove
for any . Since this is a homogenous inequality, we may normalize it so that . The inequality then becomes
.
Expanding the left side, we see that this is
.
But this is clearly equivalent to
,
which holds by the rearrangement inequality.
Proof: without calculus
We will proceed by induction on .
For , the inequality just reduces to AM-GM inequality. Now suppose that for some positive integer the inequality holds.
Let , , , be non-negative numbers and be the symmetric averages of them. Let be the symmetric averages of , , . Note that .
By induction this completes the proof.