Difference between revisions of "1979 AHSME Problems/Problem 24"

(Solution)
(Solution)
 
(One intermediate revision by the same user not shown)
Line 38: Line 38:
 
draw((0,4)--(0,7), dashed);
 
draw((0,4)--(0,7), dashed);
 
draw((0,7)--(4,7), dashed);
 
draw((0,7)--(4,7), dashed);
 +
//diagram by WannabeCharmander
 
</asy>
 
</asy>
  
Line 44: Line 45:
 
Since <math>\sin BCD = \frac{3}{5}</math>, we get <math>\sin ECB=\sin(180-BCD)=\sin BCD = \frac{3}{5}</math>. Thus, <math>EB=3</math> and <math>EC=4</math> from simple sin application.
 
Since <math>\sin BCD = \frac{3}{5}</math>, we get <math>\sin ECB=\sin(180-BCD)=\sin BCD = \frac{3}{5}</math>. Thus, <math>EB=3</math> and <math>EC=4</math> from simple sin application.
  
<math>AD</math> is the hypotenuse of right <math>\triangle AED</math>, with leg lengths <math>AB+BE=7</math> and <math>EC+CD=24</math>. Thus, <math>AD=\boxed{\textbf{E} 25}</math>
+
<math>AD</math> is the hypotenuse of right <math>\triangle AED</math>, with leg lengths <math>AB+BE=7</math> and <math>EC+CD=24</math>. Thus, <math>AD=\boxed{\textbf{(E)}25}</math>
 +
 
 +
-WannabeCharmander
  
 
== See also ==
 
== See also ==

Latest revision as of 22:23, 21 June 2018

Problem 24

Sides $AB,~ BC$, and $CD$ of (simple*) quadrilateral $ABCD$ have lengths $4,~ 5$, and $20$, respectively. If vertex angles $B$ and $C$ are obtuse and $\sin C = - \cos B =\frac{3}{5}$, then side $AD$ has length

  • A polygon is called “simple” if it is not self intersecting.

$\textbf{(A) }24\qquad \textbf{(B) }24.5\qquad \textbf{(C) }24.6\qquad \textbf{(D) }24.8\qquad \textbf{(E) }25$

Solution

We know that $\sin(C)=-\cos(B)=\frac{3}{5}$. Since $B$ and $C$ are obtuse, we have $\sin(180-C)=\cos(180-B)=\frac{3}{5}$. It is known that $\sin(x)=\cos(90-x)$, so $180-C=90-(180-C)=180-B$. We simplify this as follows:

\[-90+C=180-B\]

\[B+C=270^{\circ}\]

Since $B+C=270^{\circ}$, we know that $A+D=360-(B+C)=90^{\circ}$. Now extend $AB$ and $CD$ as follows:

[asy] size(10cm); label("A",(-1,0)); dot((0,0)); label("B",(-1,4)); dot((0,4)); label("E",(-1,7)); dot((0,7)); label("C",(4,8)); dot((4,7)); label("D",(24,8)); dot((24,7)); draw((0,0)--(0,4)); draw((0,4)--(4,7)); draw((4,7)--(24,7)); draw((24,7)--(0,0)); draw((0,4)--(0,7), dashed); draw((0,7)--(4,7), dashed); //diagram by WannabeCharmander [/asy]

Let $AB$ and $CD$ intersect at $E$. We know that $\angle AED=90^{\circ}$ because $\angle E = 180 - (A+D)=180-90 = 90^{\circ}$.

Since $\sin BCD = \frac{3}{5}$, we get $\sin ECB=\sin(180-BCD)=\sin BCD = \frac{3}{5}$. Thus, $EB=3$ and $EC=4$ from simple sin application.

$AD$ is the hypotenuse of right $\triangle AED$, with leg lengths $AB+BE=7$ and $EC+CD=24$. Thus, $AD=\boxed{\textbf{(E)}25}$

-WannabeCharmander

See also

1979 AHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 23
Followed by
Problem 25
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png