Difference between revisions of "1961 AHSME Problems/Problem 31"

(Solution to Problem 31)
 
m (Better spacing)
 
(One intermediate revision by the same user not shown)
Line 32: Line 32:
 
</asy>
 
</asy>
 
Let <math>AC = 3n</math> and <math>BC = 4n</math>.  Draw <math>X</math>, where <math>X</math> is on <math>BC</math> and <math>AC \parallel PX</math>.  By AA Similarity, <math>\triangle ABC \sim \triangle PBX</math>, so <math>PX = 3an</math>, <math>BX = 4an</math>, and <math>CX = 4an - 4n</math>.
 
Let <math>AC = 3n</math> and <math>BC = 4n</math>.  Draw <math>X</math>, where <math>X</math> is on <math>BC</math> and <math>AC \parallel PX</math>.  By AA Similarity, <math>\triangle ABC \sim \triangle PBX</math>, so <math>PX = 3an</math>, <math>BX = 4an</math>, and <math>CX = 4an - 4n</math>.
 +
 
<br>
 
<br>
 
Also, let <math>\angle ABC = a</math> and <math>\angle BAC = b</math>.  Since the angles of a triangle add up to <math>180^{\circ}</math>, <math>\angle BCA = 180-a-b</math>.  By Exterior Angle Theorem, <math>\angle ACX = a+b</math>, and since <math>CP</math> bisects <math>\angle ACX</math>, <math>\angle PCX = \frac{a+b}{2}</math>.  Because <math>AC \parallel PX</math>, <math>\angle BXP = 180 - a - b</math>.  Thus, <math>\angle CPX = \frac{a+b}{2}</math>, making <math>\triangle CPX</math> an [[isosceles triangle]].
 
Also, let <math>\angle ABC = a</math> and <math>\angle BAC = b</math>.  Since the angles of a triangle add up to <math>180^{\circ}</math>, <math>\angle BCA = 180-a-b</math>.  By Exterior Angle Theorem, <math>\angle ACX = a+b</math>, and since <math>CP</math> bisects <math>\angle ACX</math>, <math>\angle PCX = \frac{a+b}{2}</math>.  Because <math>AC \parallel PX</math>, <math>\angle BXP = 180 - a - b</math>.  Thus, <math>\angle CPX = \frac{a+b}{2}</math>, making <math>\triangle CPX</math> an [[isosceles triangle]].
 +
 
<br>
 
<br>
Because <math>\triangle CPX</math> is isosceles, <math>PX = CX</math>, so <math>4an - 4n = 3an</math>.  That means <math>a = 4</math>, so <math>PB = 4 \cdot AB</math>.  Thus, <math>PA = PB - AB = 3 \cdot AB</math>, so <math>PA : AB = 3:1</math>.  The answer is <math>\boxed{\textbf{(D)}}</math>.
+
Because <math>\triangle CPX</math> is isosceles, <math>PX = CX</math>, so <math>4an - 4n = 3an</math>.  That means <math>a = 4</math>, so <math>PB = 4 \cdot AB</math>.  Thus, <math>PA = PB - AB = 3 \cdot AB</math>, so <math>PA : AB = 3:1</math>.  The answer is <math>\boxed{\textbf{(D)}}</math>, and it can be verified (or obtained) by making <math>ABC</math> a 3-4-5 right triangle.
  
 
==See Also==
 
==See Also==

Latest revision as of 01:39, 7 June 2018

Problem

In $\triangle ABC$ the ratio $AC:CB$ is $3:4$. The bisector of the exterior angle at $C$ intersects $BA$ extended at $P$ ($A$ is between $P$ and $B$). The ratio $PA:AB$ is:

$\textbf{(A)}\ 1:3 \qquad \textbf{(B)}\ 3:4 \qquad \textbf{(C)}\ 4:3 \qquad \textbf{(D)}\ 3:1 \qquad \textbf{(E)}\ 7:1$

Solution

[asy] draw((0,0)--(40,0)--(16,18)--(0,0)); draw((40,0)--(64,72)--(16,18)); draw((40,0)--(160,0)--(64,72),dotted); dot((0,0)); label("B",(0,0),SW); dot((16,18)); label("A",(16,18),NW); dot((40,0)); label("C",(40,0),S); dot((64,72)); label("P",(64,72),N); dot((160,0)); label("X",(160,0),SE);  label("$4n$",(20,0),S); label("$3n$",(33,17)); label("$4an-4n$",(100,0),S); label("$3an$",(112,36),NE); [/asy] Let $AC = 3n$ and $BC = 4n$. Draw $X$, where $X$ is on $BC$ and $AC \parallel PX$. By AA Similarity, $\triangle ABC \sim \triangle PBX$, so $PX = 3an$, $BX = 4an$, and $CX = 4an - 4n$.


Also, let $\angle ABC = a$ and $\angle BAC = b$. Since the angles of a triangle add up to $180^{\circ}$, $\angle BCA = 180-a-b$. By Exterior Angle Theorem, $\angle ACX = a+b$, and since $CP$ bisects $\angle ACX$, $\angle PCX = \frac{a+b}{2}$. Because $AC \parallel PX$, $\angle BXP = 180 - a - b$. Thus, $\angle CPX = \frac{a+b}{2}$, making $\triangle CPX$ an isosceles triangle.


Because $\triangle CPX$ is isosceles, $PX = CX$, so $4an - 4n = 3an$. That means $a = 4$, so $PB = 4 \cdot AB$. Thus, $PA = PB - AB = 3 \cdot AB$, so $PA : AB = 3:1$. The answer is $\boxed{\textbf{(D)}}$, and it can be verified (or obtained) by making $ABC$ a 3-4-5 right triangle.

See Also

1961 AHSC (ProblemsAnswer KeyResources)
Preceded by
Problem 30
Followed by
Problem 32
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png