Difference between revisions of "2016 JBMO Problems/Problem 2"

(Problem)
(Problem)
 
(2 intermediate revisions by one other user not shown)
Line 1: Line 1:
 
== Problem ==
 
== Problem ==
  
Let <math>a,b,c </math>be positive real numbers.Prove that  
+
Let <math>a,b,c</math> be positive real numbers. Prove that  
  
 
<math>\frac{8}{(a+b)^2 + 4abc} + \frac{8}{(b+c)^2 + 4abc} + \frac{8}{(a+c)^2 + 4abc} + a^2 + b^2 + c ^2 \ge \frac{8}{a+3} + \frac{8}{b+3} + \frac{8}{c+3}</math>.
 
<math>\frac{8}{(a+b)^2 + 4abc} + \frac{8}{(b+c)^2 + 4abc} + \frac{8}{(a+c)^2 + 4abc} + a^2 + b^2 + c ^2 \ge \frac{8}{a+3} + \frac{8}{b+3} + \frac{8}{c+3}</math>.
Line 11: Line 11:
  
 
{{JBMO box|year=2016|num-b=1|num-a=3|five=}}
 
{{JBMO box|year=2016|num-b=1|num-a=3|five=}}
 +
 +
[[Category:Intermediate Algebra Problems]]

Latest revision as of 21:53, 2 March 2020

Problem

Let $a,b,c$ be positive real numbers. Prove that

$\frac{8}{(a+b)^2 + 4abc} + \frac{8}{(b+c)^2 + 4abc} + \frac{8}{(a+c)^2 + 4abc} + a^2 + b^2 + c ^2 \ge \frac{8}{a+3} + \frac{8}{b+3} + \frac{8}{c+3}$.

Solution

See also

2016 JBMO (ProblemsResources)
Preceded by
Problem 1
Followed by
Problem 3
1 2 3 4
All JBMO Problems and Solutions