Difference between revisions of "2018 AIME I Problems/Problem 15"

m (Protected "2018 AIME I Problems/Problem 15" ([Edit=Allow only administrators] (expires 23:18, 7 March 2018 (UTC)) [Move=Allow only administrators] (expires 23:18, 7 March 2018 (UTC))))
(Note)
 
(49 intermediate revisions by 18 users not shown)
Line 1: Line 1:
How many numbers <math>n</math> leave a remainder of <math>\frac{n}{2}</math> when divided by a perfect square less than <math>100</math>?
+
==Problem 15==
 +
David found four sticks of different lengths that can be used to form three non-congruent convex cyclic quadrilaterals, <math>A,\text{ }B,\text{ }C</math>, which can each be inscribed in a circle with radius <math>1</math>. Let <math>\varphi_A</math> denote the measure of the acute angle made by the diagonals of quadrilateral <math>A</math>, and define <math>\varphi_B</math> and <math>\varphi_C</math> similarly. Suppose that <math>\sin\varphi_A=\tfrac{2}{3}</math>, <math>\sin\varphi_B=\tfrac{3}{5}</math>, and <math>\sin\varphi_C=\tfrac{6}{7}</math>. All three quadrilaterals have the same area <math>K</math>, which can be written in the form <math>\dfrac{m}{n}</math>, where <math>m</math> and <math>n</math> are relatively prime positive integers. Find <math>m+n</math>.
 +
 
 +
==Solution 1==
 +
 
 +
Suppose our four sides lengths cut out arc lengths of <math>2a</math>, <math>2b</math>, <math>2c</math>, and <math>2d</math>, where <math>a+b+c+d=180^\circ</math>. Then, we only have to consider which arc is opposite <math>2a</math>. These are our three cases, so
 +
<cmath>\varphi_A=a+c</cmath>
 +
<cmath>\varphi_B=a+b</cmath>
 +
<cmath>\varphi_C=a+d</cmath>
 +
Our first case involves quadrilateral <math>ABCD</math> with <math>\overarc{AB}=2a</math>, <math>\overarc{BC}=2b</math>, <math>\overarc{CD}=2c</math>, and <math>\overarc{DA}=2d</math>.
 +
 
 +
Then, by Law of Sines, <math>AC=2\sin\left(\frac{\overarc{ABC}}{2}\right)=2\sin(a+b)</math> and <math>BD=2\sin\left(\frac{\overarc{BCD}}{2}\right)=2\sin(a+d)</math>. Therefore,
 +
 
 +
<cmath>K=\frac{1}{2}\cdot AC\cdot BD\cdot \sin(\varphi_A)=2\sin\varphi_A\sin\varphi_B\sin\varphi_C=\frac{24}{35},</cmath>
 +
so our answer is <math>24+35=\boxed{059}</math>.
 +
 
 +
Note that the conditions of the problem are satisfied when the lengths of the four sticks are about <math>0.32, 0.91, 1.06, 1.82</math>.
 +
 
 +
By S.B.
 +
 
 +
===Note===
 +
[[File:CyclIntersect.png|400px]]
 +
 
 +
The solution uses <cmath>\varphi_A=a+c.</cmath>
 +
 
 +
We can see that this follows because <math>\varphi_A = \frac12 (2a+2c)=a+c,</math> where <math>a</math> and <math>c</math> are the central angles of opposite sides.
 +
____Shen Kislay Kai
 +
 
 +
==Solution 2==
 +
 
 +
Suppose the four side lengths of the quadrilateral cut out arc lengths of <math>2a</math>, <math>2b</math>, <math>2c</math>, and <math>2d</math>.
 +
<math>a+b+c+d=180^\circ</math>.
 +
Therefore, without losing generality,
 +
 
 +
<cmath>\varphi_A=a+b</cmath>
 +
<cmath>\varphi_B=b+c</cmath>
 +
<cmath>\varphi_C=a+c</cmath>
 +
 
 +
<math>(1)+(3)-(2)</math>, <math>(1)+(2)-(3)</math>, and <math>(2)+(3)-(1)</math> yields
 +
 
 +
<cmath>2a=\varphi_A+\varphi_C-\varphi_B</cmath>
 +
<cmath>2b=\varphi_A+\varphi_B-\varphi_C</cmath>
 +
<cmath>2c=\varphi_B+\varphi_C-\varphi_A</cmath>
 +
 
 +
Because <math>2d=360^\circ-2a-2b-2c,</math>
 +
Therefore,
 +
 
 +
<cmath>2d=360^\circ-\varphi_A-\varphi_B-\varphi_C</cmath>
 +
 
 +
Using the [[trigonometric identity|sum-to-product identities]], our area of the quadrilateral <math>K</math> then would be
 +
 
 +
<cmath>
 +
\begin{align*}
 +
K&=\frac{1}{2}(\sin(2a)+\sin(2b)+\sin(2c)+\sin(2d))\\
 +
&=\frac{1}{2}(\sin(\varphi_A+\varphi_B-\varphi_C)+\sin(\varphi_B+\varphi_C-\varphi_A)+\sin(\varphi_C+\varphi_A-\varphi_B)-\sin(\varphi_A+\varphi_B+\varphi_C))\\
 +
&=\frac{1}{2}(2\sin\varphi_B\cos(\varphi_A-\varphi_C)-2\sin\varphi_B\cos(\varphi_A+\varphi_C))\\
 +
&=\frac{1}{2}\cdot2\cdot2\sin\varphi_A\sin\varphi_B\sin\varphi_C\\
 +
&=2\sin\varphi_A\sin\varphi_B\sin\varphi_C\\
 +
&=\frac{24}{35}\\
 +
\end{align*}
 +
</cmath>
 +
 
 +
Therefore, our answer is <math>24+35=\boxed{059}</math>.
 +
 
 +
~Solution by eric-z
 +
 
 +
==Solution 3==
 +
 
 +
Let the four stick lengths be <math>a</math>, <math>b</math>, <math>c</math>, and <math>d</math>. WLOG, let’s say that quadrilateral <math>A</math> has sides <math>a</math> and <math>d</math> opposite each other, quadrilateral <math>B</math> has sides <math>b</math> and <math>d</math> opposite each other, and quadrilateral <math>C</math> has sides <math>c</math> and <math>d</math> opposite each other. The area of a convex quadrilateral can be written as <math>\frac{1}{2} d_1 d_2 \sin{\theta}</math>, where <math>d_1</math> and <math>d_2</math> are the lengths of the diagonals of the quadrilateral and <math>\theta</math> is the angle formed by the intersection of <math>d_1</math> and <math>d_2</math>. By Ptolemy's theorem <math>d_1 d_2 = ad+bc</math> for quadrilateral <math>A</math>, so, defining <math>K_A</math> as the area of <math>A</math>,
 +
<cmath>K_A = \frac{1}{2} (ad+bc)\sin{\varphi_A}</cmath>
 +
Similarly, for quadrilaterals <math>B</math> and <math>C</math>,
 +
<cmath>K_B = \frac{1}{2} (bd+ac)\sin{\varphi_B}</cmath>
 +
and
 +
<cmath>K_C = \frac{1}{2} (cd+ab)\sin{\varphi_C}</cmath>
 +
Multiplying the three equations and rearranging, we see that
 +
<cmath>K_A K_B K_C = \frac{1}{8} (ab+cd)(ac+bd)(ad+bc)\sin{\varphi_A}\sin{\varphi_B}\sin{\varphi_B}</cmath>
 +
<cmath>K^3 = \frac{1}{8} (ab+cd)(ac+bd)(ad+bc)\left(\frac{2}{3}\right) \left(\frac{3}{5}\right) \left(\frac{6}{7}\right)</cmath>
 +
<cmath>\frac{70}{3}K^3 = (ab+cd)(ac+bd)(ad+bc)</cmath>
 +
The circumradius <math>R</math> of a cyclic quadrilateral with side lengths <math>a</math>, <math>b</math>, <math>c</math>, and <math>d</math> and area <math>K</math> can be computed as <math>R = \frac{\sqrt{(ab+cd)(ac+bd)(ad+bc)}}{4K}</math>.
 +
Inserting what we know,
 +
<cmath>1 = \frac{\sqrt{\frac{70}{3}K^3}}{4K}\quad \Rightarrow \quad 16K^2 = \frac{70}{3}K^3\quad \Rightarrow \quad \frac{24}{35} = K</cmath>
 +
So our answer is <math>24 + 35 = \boxed{059}</math>.
 +
 
 +
~Solution by divij04
 +
 
 +
==Solution 4 (No words)==
 +
[[File:2018 AIME I 15.png|900px]]
 +
 
 +
'''vladimir.shelomovskii@gmail.com, vvsss'''
 +
 
 +
==Solution 5==
 +
Let the sides of the quadrilaterals be <math>a,b,c,</math> and <math>d</math> in some order such that <math>A</math> has <math>a</math> opposite of <math>c</math>, <math>B</math> has <math>a</math> opposite of <math>b</math>, and <math>C</math> has <math>a</math> opposite of <math>d</math>. Then, let the diagonals of <math>A</math> be <math>e</math> and <math>f</math>. Similarly to solution <math>2</math>, we get that <math>\tfrac{2}{3}(ac+bd)=\tfrac{3}{5}(ab+cd)=\tfrac{6}{7}(ad+bc)=2K</math>, but this is also equal to <math>2\cdot\tfrac{eab+ecd}{4(1)}=2\cdot\tfrac{fad+fbc}{4(1)}</math> using the area formula for a triangle using the circumradius and the sides, so <math>\tfrac{e(ab+cd)}{2}=\tfrac{3}{5}(ab+cd)</math> and <math>\tfrac{f(ad+bc)}{2}=\tfrac{6}{7}(ad+bc)</math>. Solving for <math>e</math> and <math>f</math>, we get that <math>e=\tfrac{6}{5}</math> and <math>f=\tfrac{12}{7}</math>, but <math>K=\tfrac{1}{2}\cdot\tfrac{2}{3}\cdot{}ef</math>, similarly to solution <math>2</math>, so <math>K=\tfrac{24}{35}</math> and the answer is <math>24+35=\boxed{059}</math>.
 +
 
 +
==Video Solution by MOP 2024==
 +
https://youtu.be/oPG4MHzpvcc
 +
 
 +
~r00tsOfUnity
 +
 
 +
==See Also==
 +
{{AIME box|year=2018|n=I|num-b=14|after=Last question}}
 +
{{MAA Notice}}

Latest revision as of 00:46, 20 November 2024

Problem 15

David found four sticks of different lengths that can be used to form three non-congruent convex cyclic quadrilaterals, $A,\text{ }B,\text{ }C$, which can each be inscribed in a circle with radius $1$. Let $\varphi_A$ denote the measure of the acute angle made by the diagonals of quadrilateral $A$, and define $\varphi_B$ and $\varphi_C$ similarly. Suppose that $\sin\varphi_A=\tfrac{2}{3}$, $\sin\varphi_B=\tfrac{3}{5}$, and $\sin\varphi_C=\tfrac{6}{7}$. All three quadrilaterals have the same area $K$, which can be written in the form $\dfrac{m}{n}$, where $m$ and $n$ are relatively prime positive integers. Find $m+n$.

Solution 1

Suppose our four sides lengths cut out arc lengths of $2a$, $2b$, $2c$, and $2d$, where $a+b+c+d=180^\circ$. Then, we only have to consider which arc is opposite $2a$. These are our three cases, so \[\varphi_A=a+c\] \[\varphi_B=a+b\] \[\varphi_C=a+d\] Our first case involves quadrilateral $ABCD$ with $\overarc{AB}=2a$, $\overarc{BC}=2b$, $\overarc{CD}=2c$, and $\overarc{DA}=2d$.

Then, by Law of Sines, $AC=2\sin\left(\frac{\overarc{ABC}}{2}\right)=2\sin(a+b)$ and $BD=2\sin\left(\frac{\overarc{BCD}}{2}\right)=2\sin(a+d)$. Therefore,

\[K=\frac{1}{2}\cdot AC\cdot BD\cdot \sin(\varphi_A)=2\sin\varphi_A\sin\varphi_B\sin\varphi_C=\frac{24}{35},\] so our answer is $24+35=\boxed{059}$.

Note that the conditions of the problem are satisfied when the lengths of the four sticks are about $0.32, 0.91, 1.06, 1.82$.

By S.B.

Note

CyclIntersect.png

The solution uses \[\varphi_A=a+c.\]

We can see that this follows because $\varphi_A = \frac12 (2a+2c)=a+c,$ where $a$ and $c$ are the central angles of opposite sides. ____Shen Kislay Kai

Solution 2

Suppose the four side lengths of the quadrilateral cut out arc lengths of $2a$, $2b$, $2c$, and $2d$. $a+b+c+d=180^\circ$. Therefore, without losing generality,

\[\varphi_A=a+b\] \[\varphi_B=b+c\] \[\varphi_C=a+c\]

$(1)+(3)-(2)$, $(1)+(2)-(3)$, and $(2)+(3)-(1)$ yields

\[2a=\varphi_A+\varphi_C-\varphi_B\] \[2b=\varphi_A+\varphi_B-\varphi_C\] \[2c=\varphi_B+\varphi_C-\varphi_A\]

Because $2d=360^\circ-2a-2b-2c,$ Therefore,

\[2d=360^\circ-\varphi_A-\varphi_B-\varphi_C\]

Using the sum-to-product identities, our area of the quadrilateral $K$ then would be

\begin{align*}  K&=\frac{1}{2}(\sin(2a)+\sin(2b)+\sin(2c)+\sin(2d))\\ &=\frac{1}{2}(\sin(\varphi_A+\varphi_B-\varphi_C)+\sin(\varphi_B+\varphi_C-\varphi_A)+\sin(\varphi_C+\varphi_A-\varphi_B)-\sin(\varphi_A+\varphi_B+\varphi_C))\\ &=\frac{1}{2}(2\sin\varphi_B\cos(\varphi_A-\varphi_C)-2\sin\varphi_B\cos(\varphi_A+\varphi_C))\\ &=\frac{1}{2}\cdot2\cdot2\sin\varphi_A\sin\varphi_B\sin\varphi_C\\ &=2\sin\varphi_A\sin\varphi_B\sin\varphi_C\\ &=\frac{24}{35}\\ \end{align*}

Therefore, our answer is $24+35=\boxed{059}$.

~Solution by eric-z

Solution 3

Let the four stick lengths be $a$, $b$, $c$, and $d$. WLOG, let’s say that quadrilateral $A$ has sides $a$ and $d$ opposite each other, quadrilateral $B$ has sides $b$ and $d$ opposite each other, and quadrilateral $C$ has sides $c$ and $d$ opposite each other. The area of a convex quadrilateral can be written as $\frac{1}{2} d_1 d_2 \sin{\theta}$, where $d_1$ and $d_2$ are the lengths of the diagonals of the quadrilateral and $\theta$ is the angle formed by the intersection of $d_1$ and $d_2$. By Ptolemy's theorem $d_1 d_2 = ad+bc$ for quadrilateral $A$, so, defining $K_A$ as the area of $A$, \[K_A = \frac{1}{2} (ad+bc)\sin{\varphi_A}\] Similarly, for quadrilaterals $B$ and $C$, \[K_B = \frac{1}{2} (bd+ac)\sin{\varphi_B}\] and \[K_C = \frac{1}{2} (cd+ab)\sin{\varphi_C}\] Multiplying the three equations and rearranging, we see that \[K_A K_B K_C = \frac{1}{8} (ab+cd)(ac+bd)(ad+bc)\sin{\varphi_A}\sin{\varphi_B}\sin{\varphi_B}\] \[K^3 = \frac{1}{8} (ab+cd)(ac+bd)(ad+bc)\left(\frac{2}{3}\right) \left(\frac{3}{5}\right) \left(\frac{6}{7}\right)\] \[\frac{70}{3}K^3 = (ab+cd)(ac+bd)(ad+bc)\] The circumradius $R$ of a cyclic quadrilateral with side lengths $a$, $b$, $c$, and $d$ and area $K$ can be computed as $R = \frac{\sqrt{(ab+cd)(ac+bd)(ad+bc)}}{4K}$. Inserting what we know, \[1 = \frac{\sqrt{\frac{70}{3}K^3}}{4K}\quad \Rightarrow \quad 16K^2 = \frac{70}{3}K^3\quad \Rightarrow \quad \frac{24}{35} = K\] So our answer is $24 + 35 = \boxed{059}$.

~Solution by divij04

Solution 4 (No words)

2018 AIME I 15.png

vladimir.shelomovskii@gmail.com, vvsss

Solution 5

Let the sides of the quadrilaterals be $a,b,c,$ and $d$ in some order such that $A$ has $a$ opposite of $c$, $B$ has $a$ opposite of $b$, and $C$ has $a$ opposite of $d$. Then, let the diagonals of $A$ be $e$ and $f$. Similarly to solution $2$, we get that $\tfrac{2}{3}(ac+bd)=\tfrac{3}{5}(ab+cd)=\tfrac{6}{7}(ad+bc)=2K$, but this is also equal to $2\cdot\tfrac{eab+ecd}{4(1)}=2\cdot\tfrac{fad+fbc}{4(1)}$ using the area formula for a triangle using the circumradius and the sides, so $\tfrac{e(ab+cd)}{2}=\tfrac{3}{5}(ab+cd)$ and $\tfrac{f(ad+bc)}{2}=\tfrac{6}{7}(ad+bc)$. Solving for $e$ and $f$, we get that $e=\tfrac{6}{5}$ and $f=\tfrac{12}{7}$, but $K=\tfrac{1}{2}\cdot\tfrac{2}{3}\cdot{}ef$, similarly to solution $2$, so $K=\tfrac{24}{35}$ and the answer is $24+35=\boxed{059}$.

Video Solution by MOP 2024

https://youtu.be/oPG4MHzpvcc

~r00tsOfUnity

See Also

2018 AIME I (ProblemsAnswer KeyResources)
Preceded by
Problem 14
Followed by
Last question
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png