Difference between revisions of "1987 AHSME Problems/Problem 19"

m (Fixed some more LaTeX)
(Solution: Corrected solution and added actual approximate value)
 
(One intermediate revision by one other user not shown)
Line 10: Line 10:
  
 
== Solution ==
 
== Solution ==
We have <math>\sqrt{65} > 8 > 7.5</math>. Also <math>7.5^2 = (7 + 0.5)^2 = 7^2 + 2 \cdot 7 \cdot 0.5 + 0.5^2 = 49 + 7 + 0.25 = 56.25 < 63</math>, so <math>\sqrt{63} > 7.5</math>. Thus <math>\sqrt{65} + \sqrt{63} > 7.5 + 7.5 = 15</math>. Now notice that <math>\sqrt{65} - \sqrt{63} = \frac{(\sqrt{65} - \sqrt{63})(\sqrt{65} + \sqrt{63})}{\sqrt{65} + \sqrt{63}} = \frac{2}{\sqrt{65} + \sqrt{63}}</math>, so <math>\sqrt{65} - \sqrt{63} < \frac{2}{15} = 0.1333333...</math>, so the answer must be <math>A</math> or <math>B</math>. To determine which, we write <math>\sqrt{65} - \sqrt{63} > 0.125 \iff 65 - 2\sqrt{65 \cdot 63} + 63 > 0.015625 \iff 128 - 0.015625 > 2\sqrt{4095} \iff \sqrt{4095} < 64 - 0.0078125 \iff 4095 < 4096 - 32 \cdot 0.0078125 + 0.0078125^2 = 4096 - 0.25 + 0.0078125^2</math>, which is true. Hence as the expression is greater than <math>0.125</math>, and less than or equal to <math>0.13</math> (since we showed it is certainly less than <math>0.1333333...</math>), it is closest to <math>0.13</math>, which is answer <math>\boxed{\text{B}}</math>.
+
We have <math>\sqrt{65} > 8 > 7.5</math>. Also <math>7.5^2 = (7 + 0.5)^2 = 7^2 + 2 \cdot 7 \cdot 0.5 + 0.5^2 = 49 + 7 + 0.25 = 56.25 < 63</math>, so <math>\sqrt{63} > 7.5</math>. Thus <math>\sqrt{65} + \sqrt{63} > 7.5 + 7.5 = 15</math>. Now notice that <math>\sqrt{65} - \sqrt{63} = \frac{(\sqrt{65} - \sqrt{63})(\sqrt{65} + \sqrt{63})}{\sqrt{65} + \sqrt{63}} = \frac{2}{\sqrt{65} + \sqrt{63}}</math>, so <math>\sqrt{65} - \sqrt{63} < \frac{2}{15} = 0.1333333...</math>, so the answer must be <math>A</math> or <math>B</math>. To determine which, we write <math>\sqrt{65} - \sqrt{63} > 0.125 \iff 65 - 2\sqrt{65 \cdot 63} + 63 > 0.015625 \iff 128 - 0.015625 > 2\sqrt{4095} \iff \sqrt{4095} < 64 - 0.0078125 \iff 4095 < 4096 - 128 \cdot 0.0078125 + 0.0078125^2 = 4096 - 1 + 0.0078125^2</math> which is true. Hence as the expression is greater than <math>0.125</math>, and less than or equal to <math>0.13</math> (since we showed it is certainly less than <math>0.1333333...</math>), it is closest to <math>0.13</math>, which is answer <math>\boxed{\text{B}}</math>.
 +
 
 +
(<math>\sqrt{65} - \sqrt{63}</math> is approximately equal to <math>0.125003815</math>)
  
 
== See also ==
 
== See also ==

Latest revision as of 07:02, 12 July 2018

Problem

Which of the following is closest to $\sqrt{65}-\sqrt{63}$?

$\textbf{(A)}\ .12 \qquad \textbf{(B)}\ .13 \qquad \textbf{(C)}\ .14 \qquad \textbf{(D)}\ .15 \qquad \textbf{(E)}\ .16$

Solution

We have $\sqrt{65} > 8 > 7.5$. Also $7.5^2 = (7 + 0.5)^2 = 7^2 + 2 \cdot 7 \cdot 0.5 + 0.5^2 = 49 + 7 + 0.25 = 56.25 < 63$, so $\sqrt{63} > 7.5$. Thus $\sqrt{65} + \sqrt{63} > 7.5 + 7.5 = 15$. Now notice that $\sqrt{65} - \sqrt{63} = \frac{(\sqrt{65} - \sqrt{63})(\sqrt{65} + \sqrt{63})}{\sqrt{65} + \sqrt{63}} = \frac{2}{\sqrt{65} + \sqrt{63}}$, so $\sqrt{65} - \sqrt{63} < \frac{2}{15} = 0.1333333...$, so the answer must be $A$ or $B$. To determine which, we write $\sqrt{65} - \sqrt{63} > 0.125 \iff 65 - 2\sqrt{65 \cdot 63} + 63 > 0.015625 \iff 128 - 0.015625 > 2\sqrt{4095} \iff \sqrt{4095} < 64 - 0.0078125 \iff 4095 < 4096 - 128 \cdot 0.0078125 + 0.0078125^2 = 4096 - 1 + 0.0078125^2$ which is true. Hence as the expression is greater than $0.125$, and less than or equal to $0.13$ (since we showed it is certainly less than $0.1333333...$), it is closest to $0.13$, which is answer $\boxed{\text{B}}$.

($\sqrt{65} - \sqrt{63}$ is approximately equal to $0.125003815$)

See also

1987 AHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 18
Followed by
Problem 20
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png