Difference between revisions of "2018 AMC 10A Problems/Problem 23"

(Video Solution (#21-#25))
 
(98 intermediate revisions by 31 users not shown)
Line 1: Line 1:
 +
{{duplicate|[[2018 AMC 10A Problems/Problem 23|2018 AMC 10A #23]] and [[2018 AMC 12A Problems/Problem 17|2018 AMC 12A #17]]}}
 +
 
== Problem ==
 
== Problem ==
  
Farmer Pythagoras has a field in the shape of a right triangle. The right triangle's legs have lengths 3 and 4 units. In the corner where those sides meet at a right angle, he leaves a small unplanted square <math>S</math> so that from the air it looks like the right angle symbol. The rest of the field is planted. The shortest distance from <math>S</math> to the hypotenuse is 2 units. What fraction of the field is planted?
+
Farmer Pythagoras has a field in the shape of a right triangle. The right triangle's legs have lengths <math>3</math> and <math>4</math> units. In the corner where those sides meet at a right angle, he leaves a small unplanted square <math>S</math> so that from the air it looks like the right angle symbol. The rest of the field is planted. The shortest distance from <math>S</math> to the hypotenuse is <math>2</math> units. What fraction of the field is planted?
  
 
<asy>
 
<asy>
draw((0,0)--(4,0)--(0,3)--(0,0));
+
/* Edited by MRENTHUSIASM */
draw((0,0)--(0.3,0)--(0.3,0.3)--(0,0.3)--(0,0));
+
size(160);
fill(origin--(0.3,0)--(0.3,0.3)--(0,0.3)--cycle, gray);
+
pair A, B, C, D, F;
label("$4$", (2,0), N);
+
A = origin;
label("$3$", (0,1.5), E);
+
B = (4,0);
label("$2$", (.8,1), E);
+
C = (0,3);
label("$S$", (0,0), NE);
+
D = (2/7,2/7);
draw((0.3,0.3)--(1.4,1.9), dashed);
+
F = foot(D,B,C);
 +
fill(A--(2/7,0)--D--(0,2/7)--cycle, lightgray);
 +
draw(A--B--C--cycle);
 +
draw((2/7,0)--D--(0,2/7));
 +
label("$4$", midpoint(A--B), N);
 +
label("$3$", midpoint(A--C), E);
 +
label("$2$", midpoint(D--F), SE);
 +
label("$S$", midpoint(A--D));
 +
draw(D--F, dashed);
 
</asy>
 
</asy>
  
 
<math>\textbf{(A) }  \frac{25}{27}  \qquad        \textbf{(B) }  \frac{26}{27}  \qquad    \textbf{(C) }  \frac{73}{75}  \qquad  \textbf{(D) } \frac{145}{147} \qquad  \textbf{(E) }  \frac{74}{75} </math>
 
<math>\textbf{(A) }  \frac{25}{27}  \qquad        \textbf{(B) }  \frac{26}{27}  \qquad    \textbf{(C) }  \frac{73}{75}  \qquad  \textbf{(D) } \frac{145}{147} \qquad  \textbf{(E) }  \frac{74}{75} </math>
  
==Solution 1==
+
==Solution 1 (Area Addition)==
 +
Note that the hypotenuse of the field is <math>5,</math> and the area of the field is <math>6.</math> Let <math>x</math> be the side-length of square <math>S.</math>
 +
 
 +
We partition the field into a red triangle, a yellow triangle, and a green triangle, as shown below:
 +
<asy>
 +
/* Edited by MRENTHUSIASM */
 +
size(180);
 +
pair A, B, C, D, F;
 +
A = origin;
 +
B = (4,0);
 +
C = (0,3);
 +
D = (2/7,2/7);
 +
F = foot(D,B,C);
 +
fill(A--D--C--cycle, red);
 +
fill(A--D--B--cycle, yellow);
 +
fill(B--D--C--cycle, green);
 +
draw(A--B--C--cycle);
 +
label("$5$", midpoint(B--C), NE);
 +
label("$4$", midpoint(A--B), S);
 +
label("$3$", midpoint(A--C), W);
 +
label("$2$", midpoint(D--F), SE);
 +
label("$S$", midpoint(A--D));
 +
label("$x$", midpoint((0,2/7)--D), N);
 +
label("$x$", midpoint((2/7,0)--D), E);
 +
draw((2/7,0)--D--(0,2/7));
 +
draw(A--D^^B--D^^C--D, dashed);
 +
draw(D--F, dashed);
 +
</asy>
 +
Let the brackets denote areas. By area addition, we set up an equation for <math>x:</math>
 +
<cmath>\begin{align*}
 +
[\text{Red Triangle}]+[\text{Yellow Triangle}]+[\text{Green Triangle}]&=[\text{Field}] \\
 +
\frac{3x}{2}+\frac{4x}{2}+\frac{5\cdot2}{2}&=6,
 +
\end{align*}</cmath>
 +
from which <math>x=\frac27.</math> Therefore, the answer is <cmath>\frac{[\text{Field}]-[S]}{[\text{Field}]}=\frac{6-x^2}{6}=\boxed{\textbf{(D) } \frac{145}{147}}.</cmath>
 +
~MRENTHUSIASM
 +
 
 +
==Solution 2 (Area Addition)==
 
Let the square have side length <math>x</math>. Connect the upper-right vertex of square <math>S</math> with the two vertices of the triangle's hypotenuse. This divides the triangle in several regions whose areas must add up to the area of the whole triangle, which is <math>6</math>.
 
Let the square have side length <math>x</math>. Connect the upper-right vertex of square <math>S</math> with the two vertices of the triangle's hypotenuse. This divides the triangle in several regions whose areas must add up to the area of the whole triangle, which is <math>6</math>.
 +
<asy>
 +
/* Edited by MRENTHUSIASM */
 +
size(180);
 +
pair A, B, C, D, F;
 +
A = origin;
 +
B = (4,0);
 +
C = (0,3);
 +
D = (2/7,2/7);
 +
F = foot(D,B,C);
 +
fill(A--(2/7,0)--D--(0,2/7)--cycle, lightgray);
 +
draw(A--B--C--cycle);
 +
label("$5$", midpoint(B--C), NE);
 +
label("$4$", midpoint(A--B), S);
 +
label("$3$", midpoint(A--C), W);
 +
label("$2$", midpoint(D--F), SE);
 +
label("$S$", midpoint(A--D));
 +
label("$x$", midpoint((0,2/7)--D), N);
 +
label("$x$", midpoint((2/7,0)--D), E);
 +
draw((2/7,0)--D--(0,2/7));
 +
draw(B--D^^C--D, dashed);
 +
draw(D--F, dashed);
 +
</asy>
 +
Square <math>S</math> has area <math>x^2</math>, and the two thin triangle regions have area <math>\dfrac{x(3-x)}{2}</math> and <math>\dfrac{x(4-x)}{2}</math>. The final triangular region with the hypotenuse as its base and height <math>2</math> has area <math>5</math>. Thus, we have <cmath>x^2+\dfrac{x(3-x)}{2}+\dfrac{x(4-x)}{2}+5=6.</cmath>
 +
Solving gives <math>x=\dfrac{2}{7}</math>. The area of <math>S</math> is <math>\dfrac{4}{49}</math> and the desired ratio is <math>\dfrac{6-\tfrac{4}{49}}{6}=\boxed{\textbf{(D) } \frac{145}{147}}</math>.
  
Square <math>S</math> has area <math>x^2</math>, and the two thin triangle regions have area <math>\dfrac{x(3-x)}{2}</math> and <math>\dfrac{x(4-x)}{2}</math>. The final triangular region with the hypotenuse as its base and height <math>2</math> has area <math>5</math>. Thus, we have <cmath>x^2+\dfrac{x(3-x)}{2}+\dfrac{x(4-x)}{2}+5=6</cmath>
+
Alternatively, once you get <math>x=\frac{2}{7}</math>, you can avoid computation by noticing that there is a denominator of <math>7</math>, so the answer must have a factor of <math>7</math> in the denominator, which only <math>\frac{145}{147}</math> does.
  
Solving gives <math>x=\dfrac{2}{7}</math>. The area of <math>S</math> is <math>\dfrac{4}{49}</math> and the desired ratio is <math>\dfrac{6-\dfrac{4}{49}}{6}=\boxed{\dfrac{145}{147}}</math>.
+
==Solution 3 (Similar Triangles)==
 +
Let the square have side length <math>s</math>. If we were to extend the sides of the square further into the triangle until they intersect on point on the hypotenuse, we'd have a similar right triangle formed between the hypotenuse and the two new lines, and two smaller similar triangles that share a side of length <math>2</math>. Using the side-to-side ratios of these triangles, we can find that the length of the larger similar triangle is <math>\frac{5}{3}(2)=\frac{10}{3}</math>. Now, let's extend this larger similar right triangle to the left until it hits the side of length <math>3</math>. Now, the length is <math>\frac{10}{3}+s</math>, and using the ratios of the side lengths, the height is <math>\frac{3}{4}\left(\frac{10}{3}+s\right)=\frac{5}{2}+\frac{3s}{4}</math>. Looking at the diagram, if we add the height of this triangle to the side length of the square, we'd get <math>3</math>, so
 +
<cmath>\begin{align*}
 +
\frac{5}{2}+\frac{3s}{4}+s&=3 \\
 +
\frac{5}{2}+\frac{7s}{4}&=3 \\
 +
\frac{7s}{4}&=\frac{1}{2} \\
 +
s&=\frac{2}{7}.
 +
\end{align*}</cmath>
 +
So, the area of the square is <math>\left(\frac{2}{7}\right)^2=\frac{4}{49}</math>.
  
Alternatively, once you get <math>x=\frac{2}{7}</math>, you can avoid computation by noticing that there is a denominator of <math>7</math>, so the answer must have a factor of <math>7</math> in the denominator, which only <math>\boxed{\dfrac{145}{147}}</math> does.
+
Now comes the easy part--finding the ratio of the areas: <math>\frac{3\cdot 4 \cdot \frac{1}{2} -\frac{4}{49}}{3\cdot 4 \cdot \frac{1}{2}}=\frac{6-\frac{4}{49}}{6}=\frac{294-4}{294}=\frac{290}{294}=\boxed{\textbf{(D) } \frac{145}{147}}</math>.
  
==Solution 2==
+
==Solution 4 (Similar Triangles)==
Let the square have side length <math>s</math>. If we were to extend the sides of the square further into the triangle until they intersect on point on the hypotenuse, we'd have a similar right triangle formed between the hypotenuse and the two new lines, and 2 smaller similar triangles that share a side of length 2. Using the side-to-side ratios of these triangles, we can find that the length of the big similar triangle is <math>\frac{5}{3}(2)=\frac{10}{3}</math>. Now, let's extend this big similar right triangle to the left until it hits the side of length 3. Now, the length is <math>\frac{10}{3}+s</math>, and using the ratios of the side lengths, the height is <math>\frac{3}{4}(\frac{10}{3}+s)=\frac{5}{2}+\frac{3s}{4}</math>. Looking at the diagram, if we add the height of this triangle to the side length of the square, we'd get 3, so <cmath>\frac{5}{2}+\frac{3s}{4}+s=\frac{5}{2}+\frac{7s}{4}=3 \\ \frac{7s}{4}=\frac{1}{2} \\ s=\frac{2}{7} \implies \textrm{ area of square is } (\frac{2}{7})^2=\frac{4}{49}</cmath>
+
<asy>
 +
/* Edited by MRENTHUSIASM */
 +
size(180);
 +
pair A, B, C, D, F;
 +
A = origin;
 +
B = (4,0);
 +
C = (0,3);
 +
D = (2/7,2/7);
 +
F = foot(D,B,C);
 +
fill(A--(2/7,0)--D--(0,2/7)--cycle, lightgray);
 +
draw(A--B--C--cycle);
 +
label("$4$", midpoint(A--B), S);
 +
label("$3$", midpoint(A--C), W);
 +
label("$2$", midpoint(D--F), SE);
 +
label("$S$", midpoint(A--D));
 +
label("$\ell$", midpoint((0,2/7)--D), N);
 +
label("$\ell$", midpoint((2/7,0)--D), E);
 +
label("$\ell$", midpoint((2/7,2/7+5/2)--(0,2/7+5/2)), S);
 +
label("$\ell$", midpoint((2/7+10/3,2/7)--(2/7+10/3,0)), W);
 +
label("$\frac{5}{2}$", midpoint((2/7,2/7+5/2)--D), E);
 +
label("$\frac{10}{3}$", midpoint((2/7+10/3,2/7)--D), N);
 +
draw((2/7,0)--D--(0,2/7));
 +
draw((2/7,2/7+5/2)--D^^(2/7+10/3,2/7)--D, dashed);
 +
draw((2/7,2/7+5/2)--(0,2/7+5/2)^^(2/7+10/3,2/7)--(2/7+10/3,0), dashed);
 +
draw(D--F, dashed);
 +
</asy>
 +
On the diagram above, find two smaller triangles similar to the large one with side lengths <math>3</math>, <math>4</math>, and <math>5</math>; consequently, the segments with length <math>\frac{5}{2}</math> and <math>\frac{10}{3}</math>.
  
Now comes the easy part: finding the ratio of the areas: <math>\frac{3\cdot 4 \cdot \frac{1}{2} -\frac{4}{49}}{3\cdot 4 \cdot \frac{1}{2}}=\frac{6-\frac{4}{49}}{6}=\frac{294-4}{294}=\frac{290}{294}=\boxed{\frac{145}{147}}</math>.
+
With <math>\ell</math> being the side length of the square, we need to find an expression for <math>\ell</math>. Using the hypotenuse, we can see that <math>\frac{3}{2}+\frac{8}{3}+\frac{5}{4}\ell+\frac{5}{3}\ell=5</math>. Simplifying, <math>\frac{35}{12}\ell=\frac{5}{6}</math>, or <math>\ell=\frac27</math>.
  
Solution by ktong
+
A different calculation would yield <math>\ell+\frac{3}{4}\ell+\frac{5}{2}=3</math>, so <math>\frac{7}{4}\ell=\frac{1}{2}</math>. In other words, <math>\ell=\frac{2}{7}</math>, while to check, <math>\ell+\frac{4}{3}\ell+\frac{10}{3}=4</math>. As such, <math>\frac{7}{3}\ell=\frac{2}{3}</math>, and <math>\ell=\frac{2}{7}</math>.
  
==Solution 3==
+
Finally, we get <math>A(\Square S)=\ell^2=\frac{4}{49}</math>, to finish. As a proportion of the triangle with area <math>6</math>, the answer would be <math>1-\frac{4}{49\cdot6}=1-\frac{2}{147}=\frac{145}{147}</math>, so <math>\boxed{\textbf{(D) } \frac{145}{147}}</math> is correct.
We use coordinate geometry. Let the right angle be at <math>(0,0)</math> and the hypotenuse be the line <math>3x+4y = 12</math> for <math>0\le x\le 3</math>. Denote the position of <math>S</math> as <math>(s,s)</math>, and by the point to line distance formula, we know that <cmath>\frac{|3s+4s-12|}{5} = 2</cmath> <cmath>\Rightarrow |7s-12| = 10</cmath> Obviously <math>s<\frac{22}{7}</math>, so <math>s = \frac{2}{7}</math>, and from here the rest of the solution follows to get <math>\boxed{\frac{145}{147}}</math>.
 
  
==Solution 4==
+
==Solution 5 (Similar Triangles)==
 
Let the side length of the square be <math>x</math>. First off, let us make a similar triangle with the segment of length <math>2</math> and the top-right corner of <math>S</math>. Therefore, the longest side of the smaller triangle must be <math>2 \cdot \frac54 = \frac52</math>. We then do operations with that side in terms of <math>x</math>. We subtract <math>x</math> from the bottom, and <math>\frac{3x}{4}</math> from the top. That gives us the equation of <math>3-\frac{7x}{4} = \frac{5}{2}</math>. Solving, <cmath>12-7x = 10 \implies x = \frac{2}{7}.</cmath>
 
Let the side length of the square be <math>x</math>. First off, let us make a similar triangle with the segment of length <math>2</math> and the top-right corner of <math>S</math>. Therefore, the longest side of the smaller triangle must be <math>2 \cdot \frac54 = \frac52</math>. We then do operations with that side in terms of <math>x</math>. We subtract <math>x</math> from the bottom, and <math>\frac{3x}{4}</math> from the top. That gives us the equation of <math>3-\frac{7x}{4} = \frac{5}{2}</math>. Solving, <cmath>12-7x = 10 \implies x = \frac{2}{7}.</cmath>
 +
Thus, <math>x^2 = \frac{4}{49}</math>, so the fraction of the triangle (area <math>6</math>) covered by the square is <math>\frac{2}{147}</math>. The answer is then <math>\boxed{\textbf{(D) } \frac{145}{147}}</math>.
 +
 +
==Solution 6 (Similar Triangles)==
 +
<asy>
 +
/* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki go to User:Azjps/geogebra */
 +
import graph; size(180);
 +
real labelscalefactor = 1.5; /* changes label-to-point distance */
 +
// pen dps = linewidth(0.5) + fontsize(10);
 +
// defaultpen(dps); /* default pen style */
 +
// pen dotstyle = black; /* point style */
 +
real xmin = -1.6030465381283199, xmax = 7.095084767820557, ymin = -1.3624649422453508, ymax = 4.065350676871526;  /* image dimensions */
 +
 +
/* draw figures */
 +
draw((0,0)--(0,3));
 +
draw((0,0)--(4,0));
 +
draw((4,0)--(0,3));
 +
draw((0,0.2857142857142857)--(0.2857142857142857,0.2857142857142857));
 +
draw((0.2857142857142857,0.2857142857142857)--(0.2857142857142857,0));
 +
draw((0.07142857142857142,0)--(1.4857142857142858,1.885714285714286));
 +
label("$A$",(0, 0),SW*labelscalefactor);
 +
label("$B$",(4,0),SE*labelscalefactor);
 +
label("$C$",(0, 3),N*labelscalefactor);
 +
label("$D$",(0.2857142857142857,0),S*labelscalefactor);
 +
label("$E$",(0.2857142857142857, 0.2857142857142857),E*labelscalefactor);
 +
label("$F$",(0.0714285714, 0),S*labelscalefactor);
 +
label("$G$", (1.49, 1.89), NE*labelscalefactor);
 +
/* dots and labels */
 +
clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle);
 +
/* end of picture */
 +
</asy>
 +
Let <math>AD=x</math>. Note that <math>\triangle DEF</math> is a <math>3{-}4{-}5</math> triangle, so <math>EF=\frac{5}{4}x</math> and <math>FD=\frac{3}{4}x</math>. <math>BF=BD+FD=4-x+\frac{3}{4}x=4-\frac{1}{4}x</math>. We know that <math>GE</math> is <math>2</math> from the problem so <math>GF=2+\frac{5}{4}x</math>. <math>\triangle FGB</math> is also a <math>3{-}4{-}5</math> triangle with <math>GF:BF=3:5</math>. We now have <math>3\left(4-\frac{1}{4}x\right)=5\left(2+\frac{5}{4}x\right)</math>. Solving this equation, we get that <math>x=\frac{2}{7}</math> so the area of <math>S</math> is <math>\frac{4}{49}</math>. The area of the triangle is <math>\frac{3\cdot 4}{2}=6</math> so the fraction of field that is unplanted is <math>\frac{\frac{4}{49}}{6}=\frac{2}{147}</math>. Thus, the fraction of the field that is planted is <math>1-\frac{2}{147}=\boxed{\textbf{(D) } \frac{145}{147}}</math>.
 +
 +
~Heavytoothpaste
 +
 +
==Solution 7 (Coordinate Geometry)==
 +
We use coordinate geometry. Let the right angle be at <math>(0,0)</math> and the hypotenuse be the line <math>3x+4y = 12</math> for <math>0\le x\le 3</math>. Denote the position of <math>S</math> as <math>(s,s)</math>, and by the point to line distance formula, we know that
 +
<cmath>\begin{align*}
 +
\frac{|3s+4s-12|}{5} &= 2 \\
 +
|7s-12| &= 10
 +
\end{align*}</cmath>
 +
Solving this, we get <math>s=\frac{22}{7}, \frac{2}{7}</math>. Obviously <math>s<\frac{22}{7}</math>, so <math>s = \frac{2}{7}</math>, and from here, the rest of the solution follows to get <math>\boxed{\textbf{(D) } \frac{145}{147}}</math>.
 +
 +
==Solution 8 (Coordinate Geometry)==
 +
Let the right angle be at <math>(0,0)</math>, the point <math>(x,x)</math> be the far edge of the unplanted square and the hypotenuse be the line <math>y=-\frac{3}{4}x+3</math>. Since the line from <math>(x,x)</math> to the hypotenuse is the shortest possible distance, we know this line, call it line <math>\l</math>, is perpendicular to the hypotenuse and therefore has a slope of <math>\frac{4}{3}</math>.
 +
 +
Since we know <math>m=\frac{4}{3}</math> , we can see that the line rises by <math>\frac{8}{5}</math> and moves to the right by <math>\frac{6}{5}</math> to meet the hypotenuse. (Let <math>2 = 5x</math> and the rise be <math>4x</math> and the run be <math>3x</math> and then solve.) Therefore, line <math>\l</math> intersects the hypotenuse at the point <math>\left(x+\frac{6}{5}, x+\frac{8}{5}\right)</math>. Plugging into the equation for the hypotenuse we have <math>x=\frac{2}{7}</math> , and after a bit of computation we get <math>\boxed{\textbf{(D) } \frac{145}{147}}</math>.
 +
 +
==Solution 9 (Pythagorean Theorem)==
 +
Let the side length of the square be <math>a</math>, and the lengths that the line from <math>S</math> hits the hypotenuse be <math>x</math> and <math>5-x</math>. Also, connect the outermost vertex of <math>S</math> to the vertices that <math>S</math> isn't connected to. Note that the line that hits the hypotenuse must create a right angle, since it is the shortest possible distance. This creates two pairs of right triangles that share the same hypotenuse. This means that we can set up a system of equations using the Pythagorean Theorem:
 +
<cmath>\begin{align*}
 +
a^2+(4-a)^2&=(5-x)^2+2^2, \\
 +
a^2+(3-a)^2&=x^2+2^2.
 +
\end{align*}</cmath>
 +
After *some* algebra, we obtain <math>a=\frac{2}{7}</math>, which gives the answer <math>\boxed{\textbf{(D) } \frac{145}{147}}</math>.
 +
 +
==Solution 10 (Proportions)==
 +
We name <i><b>small triangle</b></i> the  triangle similar to given in which unplanted square <math>S</math> is inscribed.
 +
The height of given triangle is 2.4 units so similarity coefficient is <math>\frac {2.4 - 2}{2.4} = \frac {1}{6}</math> , the  area is <math>\frac {1}{36}</math> of total area.
 +
 +
The ratio of planted area in <i><b>small triangle</b></i> to the area of the square is <math>\frac {3}{8} + \frac {2}{3} = \frac {25}{24}.</math>
 +
 +
The fraction of planted area in <i><b>small triangle</b></i> is <math>\frac {25}{25+24} = \frac {25}{49}.</math>
  
Thus, <math>x^2 = \frac{4}{49}</math>, so the fraction of the triangle (area <math>6</math>) covered by the square is <math>\frac{2}{147}</math>. The answer is then <math>\boxed{\dfrac{145}{147}}</math>.
+
Therefore, the fraction of the planted  field is <math>\frac {25}{49} \cdot  \frac {1}{36} + \frac {35}{36} = \boxed{\textbf{(D) } \frac{145}{147}}.</math>
  
==Solution 5==
+
'''vladimir.shelomovskii@gmail.com, vvsss'''
 +
 
 +
==Solution 11 (Bash)==
 
<asy>
 
<asy>
draw((0,0)--(4,0)--(0,3)--(0,0));
+
size(240);
draw((0,0)--(0.3,0)--(0.3,0.3)--(0,0.3)--(0,0));
+
pair A, B, C, D, F, X, Y, P, Q, M, N;
fill(origin--(0.3,0)--(0.3,0.3)--(0,0.3)--cycle, gray);
+
A = origin; label(A, "$A$", SW);
draw((0.3,0.3)--(3.6,0.3), dashed);
+
B = (4,0); label(B, "$B$", S);
draw((0.3,2.7)--(0.3,0.3), dashed);
+
C = (0,3); label(C, "$C$", W);
label("$S$", (-0.05,-0.05), NE);
+
D = (2/7,2/7); label(D, "$D$", NE);
draw((0.3,0.3)--(1.41,1.91));
+
F = foot(D,B,C); label(F, "$F$", NE);
draw((1.63,1.78)--(1.48,1.56));
+
X = (2/7,39/14); label(X, "$X$", NE, red);
draw((1.28,1.70)--(1.48,1.56));
+
Y = (76/21,2/7); label(Y, "$Y$", NE, red);
label("$4$", (2,0), S);
+
P = foot(X,A,C); label(P, "$P$", W, red);
label("$3$", (0,1.5), W);
+
Q = foot(Y,A,B); label(Q, "$Q$", S, red);
label("$\frac{10}{3}$", (2,0.3), N);
+
M = (2/7,0); label(M, "$M$", S);
label("$\frac{5}{2}$", (0.3,1.5), E);
+
N = (0,2/7); label(N, "$N$", W);
label("$2$", (1,1.2), E);
+
 
draw((3.6,0)--(3.6,0.3), dashed);
+
fill(A--(2/7,0)--D--(0,2/7)--cycle, lightgray);
draw((0,2.7)--(0.3,2.7), dashed);
+
draw(A--B--C--cycle);
label("$\small{l}$", (3.6,0.15), W);
+
draw((2/7,0)--D--(0,2/7));
label("$\small{l}$", (0.15,2.7), S);
+
label("$x$", midpoint(A--M), S);
label("$\small{l}$", (0.3,0.15), E);
+
label("$x$", midpoint(A--N), W);
label("$\small{l}$", (0.15,0.3), N);
+
label("$2$", midpoint(D--F), SE);
 +
draw(D--F);
 +
draw(D--X, red);
 +
draw(D--Y, red);
 +
draw(X--P, red);
 +
draw(Y--Q, red);
 
</asy>
 
</asy>
  
On the diagram above, find two smaller triangles similar to the large one with side lengths <math>3</math>, <math>4</math>, and <math>5</math>; consequently, the segments with length <math>\frac{5}{2}</math> and <math>\frac{10}{3}</math>.
+
Denote <math>A,B,C</math> to be the three vertices of the triangular field. Also denote <math>A,M,D,N</math> to be the vertices of the square <math>S</math>. Let <math>X</math> be on <math>BC</math> such that <math>AC\parallel DX</math> and <math>Y</math> be on <math>BC</math> such that <math>AB\parallel DY</math>. Let <math>P</math> and <math>Q</math> be the foot of the altitudes from <math>X</math> to <math>AC</math> and from <math>Y</math> to <math>AB</math> respectively.
 +
 
 +
Note that <math>\triangle ABC \sim \triangle DYX \sim \triangle PXC \sim \triangle QBY</math>. Thus, <math>PC = x \cdot \frac34</math> and <math>QB = x \cdot \frac43</math>, making
 +
<cmath>\begin{align*}
 +
DX &= 3-x-\dfrac{3}{4}x = 3-\dfrac{7}{4}x, \\
 +
MQ &= 4-x-\dfrac{4}{3}x = 4-\dfrac{7}{3}x.
 +
\end{align*}</cmath>
 +
Also from the similarity ratio is the fact that <math>CX = \frac54 x</math> and <math>BY = \frac53 x</math>, making
 +
<cmath>XY = 5 - \dfrac{5}{4}x - \dfrac{5}{3}x = 5 - \dfrac{35}{12}x.</cmath>
 +
Computing the area of <math>\triangle XDY</math> in two ways gives an equation for <math>x</math>:
 +
<cmath>\begin{align*}
 +
\left(3-\dfrac{7}{4}x\right)\left(4-\dfrac{7}{3}x\right) &= 2\cdot \left(5 - \dfrac{35}{12}x\right) \\
 +
10-\dfrac{35}{6}x &= \dfrac{49}{12}x^2 - 14x + 12 \\
 +
\dfrac{49}{12}x^2 - \dfrac{49}{6}x + 2 &= 0 \\
 +
49x^2 - 98x + 24 &= 0 \\
 +
x&=\dfrac{2}{7} \text{ or } \dfrac{12}{7}.
 +
\end{align*}</cmath>
 +
But <math>x=\dfrac{12}{7}</math> is extraneous. Thus, the area of square <math>S = x^2 = \dfrac{4}{49}</math>, making the portion of the field that is planted being <cmath>1 - \dfrac{\tfrac{4}{49}}{6} = 1 - \dfrac{2}{147} = \boxed{\textbf{(D) } \frac{145}{147}}.</cmath>
 +
 
 +
-Solution by sml1809
 +
 
 +
==Solution 12 ==
 +
Let the square have side length <math>x</math>. Note that when <math>x = \dfrac{12}{7}</math>, the square is inscribed and touching the hypotenuse. Denote <math>f(x)</math> to be the minimum distance from the square to the hypotenuse. Notably, <math>f</math> is linear with respect to <math>x</math>. <math>f(0) = \dfrac{12}{5}</math>, because it is simply the length of the hypotenuse's altitude. Similarly, <math>f(\dfrac{12}{7}) = 0</math>. We can find that <math>f(x) = \dfrac{12-7x}{5}</math>. Setting this equal to <math>2</math>, we get that <math>f(\dfrac{2}{7}) = 2</math>. Therefore, the side has side length <math>\dfrac27</math>, and has area <math>\dfrac{4}{49}</math>. So, the unshaded area is <math>1 - \dfrac{\frac{4}{49}}{6} = \boxed{\dfrac{145}{147}}</math>, or <math>(D)</math>. ~Puck_0
 +
 
 +
== Video Solution by Pi Academy (Fast and Easy with Area Addition) ==
 +
https://youtu.be/Jdx74PGIgpw?si=kO6EGrKQQUkp22X1
  
Find an expression for <math>l</math>: using the hypotenuse, we can see that <math>\frac{3}{2}+\frac{8}{3}+\frac{5}{4}l+\frac{5}{3}l=5</math>. Simplifying, <math>\frac{35}{12}l=\frac{5}{6}</math>, or <math>l=2/7</math>.
+
~ Pi Academy
  
A different calculation would yield <math>l+\frac{3}{4}l+\frac{5}{2}=3</math>, so <math>\frac{7}{4}l=\frac{1}{2}</math>. In other words, <math>l=\frac{2}{7}</math>, while to check, <math>l+\frac{4}{3}l+\frac{10}{3}=4</math>. As such, <math>\frac{7}{3}l=\frac{2}{3}</math>, and <math>l=\frac{2}{7}</math>.
+
== Video Solution (#21-#25) ==
 +
https://youtube.com/playlist?list=PLpxy89D2tvVow8EoCSsNY3Y-2SwJly_SZ&si=aEJ3Ttjck10aCIUH
  
Finally, we get <math>A(\Square S)=l^2=\frac{4}{49}</math>, to finish. As a proportion of the triangle with area <math>6</math>, the answer would be <math>1-\frac{4}{49\cdot6}=1-\frac{2}{147}=\frac{145}{147}</math>, so <math>\boxed{\textit D}</math> is correct. ∎ --anna0kear
+
== Video Solution by Richard Rusczyk ==
  
==Solution 6==
+
https://www.youtube.com/watch?v=p9npzq4FY_Y
  
Let <math>s</math> be the side length of the square. The area of the triangle is <math>6</math>. Connect the inside corner of the square to the three corners. Then, the area of the triangle is also <math>5 + \frac{3}{2}s + 2s = 5 + \frac{7}{2}s</math>. Solving gives <math>s = \frac{7}{2}</math>. That makes the answer <math>\frac{6 - \left(\frac{2}{7}\right)^2}{6} = \frac{145}{147}</math>. <math>\boxed{\textbf{D}.}</math>
+
~ dolphin7
  
 
==See Also==
 
==See Also==
Line 80: Line 278:
 
{{AMC12 box|year=2018|ab=A|num-b=16|num-a=18}}
 
{{AMC12 box|year=2018|ab=A|num-b=16|num-a=18}}
 
{{MAA Notice}}
 
{{MAA Notice}}
 +
 +
[[Category:Intermediate Geometry Problems]]

Latest revision as of 23:41, 30 October 2024

The following problem is from both the 2018 AMC 10A #23 and 2018 AMC 12A #17, so both problems redirect to this page.

Problem

Farmer Pythagoras has a field in the shape of a right triangle. The right triangle's legs have lengths $3$ and $4$ units. In the corner where those sides meet at a right angle, he leaves a small unplanted square $S$ so that from the air it looks like the right angle symbol. The rest of the field is planted. The shortest distance from $S$ to the hypotenuse is $2$ units. What fraction of the field is planted?

[asy] /* Edited by MRENTHUSIASM */ size(160); pair A, B, C, D, F; A = origin; B = (4,0); C = (0,3); D = (2/7,2/7); F = foot(D,B,C); fill(A--(2/7,0)--D--(0,2/7)--cycle, lightgray); draw(A--B--C--cycle); draw((2/7,0)--D--(0,2/7)); label("$4$", midpoint(A--B), N); label("$3$", midpoint(A--C), E); label("$2$", midpoint(D--F), SE); label("$S$", midpoint(A--D)); draw(D--F, dashed); [/asy]

$\textbf{(A) }   \frac{25}{27}   \qquad        \textbf{(B) }   \frac{26}{27}   \qquad    \textbf{(C) }   \frac{73}{75}   \qquad   \textbf{(D) } \frac{145}{147} \qquad  \textbf{(E) }   \frac{74}{75}$

Solution 1 (Area Addition)

Note that the hypotenuse of the field is $5,$ and the area of the field is $6.$ Let $x$ be the side-length of square $S.$

We partition the field into a red triangle, a yellow triangle, and a green triangle, as shown below: [asy] /* Edited by MRENTHUSIASM */ size(180); pair A, B, C, D, F; A = origin; B = (4,0); C = (0,3); D = (2/7,2/7); F = foot(D,B,C); fill(A--D--C--cycle, red); fill(A--D--B--cycle, yellow); fill(B--D--C--cycle, green); draw(A--B--C--cycle); label("$5$", midpoint(B--C), NE); label("$4$", midpoint(A--B), S); label("$3$", midpoint(A--C), W); label("$2$", midpoint(D--F), SE); label("$S$", midpoint(A--D)); label("$x$", midpoint((0,2/7)--D), N); label("$x$", midpoint((2/7,0)--D), E); draw((2/7,0)--D--(0,2/7)); draw(A--D^^B--D^^C--D, dashed); draw(D--F, dashed); [/asy] Let the brackets denote areas. By area addition, we set up an equation for $x:$ \begin{align*} [\text{Red Triangle}]+[\text{Yellow Triangle}]+[\text{Green Triangle}]&=[\text{Field}] \\ \frac{3x}{2}+\frac{4x}{2}+\frac{5\cdot2}{2}&=6, \end{align*} from which $x=\frac27.$ Therefore, the answer is \[\frac{[\text{Field}]-[S]}{[\text{Field}]}=\frac{6-x^2}{6}=\boxed{\textbf{(D) } \frac{145}{147}}.\] ~MRENTHUSIASM

Solution 2 (Area Addition)

Let the square have side length $x$. Connect the upper-right vertex of square $S$ with the two vertices of the triangle's hypotenuse. This divides the triangle in several regions whose areas must add up to the area of the whole triangle, which is $6$. [asy] /* Edited by MRENTHUSIASM */ size(180); pair A, B, C, D, F; A = origin; B = (4,0); C = (0,3); D = (2/7,2/7); F = foot(D,B,C); fill(A--(2/7,0)--D--(0,2/7)--cycle, lightgray); draw(A--B--C--cycle); label("$5$", midpoint(B--C), NE); label("$4$", midpoint(A--B), S); label("$3$", midpoint(A--C), W); label("$2$", midpoint(D--F), SE); label("$S$", midpoint(A--D)); label("$x$", midpoint((0,2/7)--D), N); label("$x$", midpoint((2/7,0)--D), E); draw((2/7,0)--D--(0,2/7)); draw(B--D^^C--D, dashed); draw(D--F, dashed); [/asy] Square $S$ has area $x^2$, and the two thin triangle regions have area $\dfrac{x(3-x)}{2}$ and $\dfrac{x(4-x)}{2}$. The final triangular region with the hypotenuse as its base and height $2$ has area $5$. Thus, we have \[x^2+\dfrac{x(3-x)}{2}+\dfrac{x(4-x)}{2}+5=6.\] Solving gives $x=\dfrac{2}{7}$. The area of $S$ is $\dfrac{4}{49}$ and the desired ratio is $\dfrac{6-\tfrac{4}{49}}{6}=\boxed{\textbf{(D) } \frac{145}{147}}$.

Alternatively, once you get $x=\frac{2}{7}$, you can avoid computation by noticing that there is a denominator of $7$, so the answer must have a factor of $7$ in the denominator, which only $\frac{145}{147}$ does.

Solution 3 (Similar Triangles)

Let the square have side length $s$. If we were to extend the sides of the square further into the triangle until they intersect on point on the hypotenuse, we'd have a similar right triangle formed between the hypotenuse and the two new lines, and two smaller similar triangles that share a side of length $2$. Using the side-to-side ratios of these triangles, we can find that the length of the larger similar triangle is $\frac{5}{3}(2)=\frac{10}{3}$. Now, let's extend this larger similar right triangle to the left until it hits the side of length $3$. Now, the length is $\frac{10}{3}+s$, and using the ratios of the side lengths, the height is $\frac{3}{4}\left(\frac{10}{3}+s\right)=\frac{5}{2}+\frac{3s}{4}$. Looking at the diagram, if we add the height of this triangle to the side length of the square, we'd get $3$, so \begin{align*} \frac{5}{2}+\frac{3s}{4}+s&=3 \\  \frac{5}{2}+\frac{7s}{4}&=3 \\ \frac{7s}{4}&=\frac{1}{2} \\ s&=\frac{2}{7}. \end{align*} So, the area of the square is $\left(\frac{2}{7}\right)^2=\frac{4}{49}$.

Now comes the easy part--finding the ratio of the areas: $\frac{3\cdot 4 \cdot \frac{1}{2} -\frac{4}{49}}{3\cdot 4 \cdot \frac{1}{2}}=\frac{6-\frac{4}{49}}{6}=\frac{294-4}{294}=\frac{290}{294}=\boxed{\textbf{(D) } \frac{145}{147}}$.

Solution 4 (Similar Triangles)

[asy] /* Edited by MRENTHUSIASM */ size(180); pair A, B, C, D, F; A = origin; B = (4,0); C = (0,3); D = (2/7,2/7); F = foot(D,B,C); fill(A--(2/7,0)--D--(0,2/7)--cycle, lightgray); draw(A--B--C--cycle); label("$4$", midpoint(A--B), S); label("$3$", midpoint(A--C), W); label("$2$", midpoint(D--F), SE); label("$S$", midpoint(A--D)); label("$\ell$", midpoint((0,2/7)--D), N); label("$\ell$", midpoint((2/7,0)--D), E); label("$\ell$", midpoint((2/7,2/7+5/2)--(0,2/7+5/2)), S); label("$\ell$", midpoint((2/7+10/3,2/7)--(2/7+10/3,0)), W); label("$\frac{5}{2}$", midpoint((2/7,2/7+5/2)--D), E); label("$\frac{10}{3}$", midpoint((2/7+10/3,2/7)--D), N); draw((2/7,0)--D--(0,2/7)); draw((2/7,2/7+5/2)--D^^(2/7+10/3,2/7)--D, dashed); draw((2/7,2/7+5/2)--(0,2/7+5/2)^^(2/7+10/3,2/7)--(2/7+10/3,0), dashed); draw(D--F, dashed); [/asy] On the diagram above, find two smaller triangles similar to the large one with side lengths $3$, $4$, and $5$; consequently, the segments with length $\frac{5}{2}$ and $\frac{10}{3}$.

With $\ell$ being the side length of the square, we need to find an expression for $\ell$. Using the hypotenuse, we can see that $\frac{3}{2}+\frac{8}{3}+\frac{5}{4}\ell+\frac{5}{3}\ell=5$. Simplifying, $\frac{35}{12}\ell=\frac{5}{6}$, or $\ell=\frac27$.

A different calculation would yield $\ell+\frac{3}{4}\ell+\frac{5}{2}=3$, so $\frac{7}{4}\ell=\frac{1}{2}$. In other words, $\ell=\frac{2}{7}$, while to check, $\ell+\frac{4}{3}\ell+\frac{10}{3}=4$. As such, $\frac{7}{3}\ell=\frac{2}{3}$, and $\ell=\frac{2}{7}$.

Finally, we get $A(\Square S)=\ell^2=\frac{4}{49}$, to finish. As a proportion of the triangle with area $6$, the answer would be $1-\frac{4}{49\cdot6}=1-\frac{2}{147}=\frac{145}{147}$, so $\boxed{\textbf{(D) } \frac{145}{147}}$ is correct.

Solution 5 (Similar Triangles)

Let the side length of the square be $x$. First off, let us make a similar triangle with the segment of length $2$ and the top-right corner of $S$. Therefore, the longest side of the smaller triangle must be $2 \cdot \frac54 = \frac52$. We then do operations with that side in terms of $x$. We subtract $x$ from the bottom, and $\frac{3x}{4}$ from the top. That gives us the equation of $3-\frac{7x}{4} = \frac{5}{2}$. Solving, \[12-7x = 10 \implies x = \frac{2}{7}.\] Thus, $x^2 = \frac{4}{49}$, so the fraction of the triangle (area $6$) covered by the square is $\frac{2}{147}$. The answer is then $\boxed{\textbf{(D) } \frac{145}{147}}$.

Solution 6 (Similar Triangles)

[asy] /* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki go to User:Azjps/geogebra */ import graph; size(180);  real labelscalefactor = 1.5; /* changes label-to-point distance */ // pen dps = linewidth(0.5) + fontsize(10);  // defaultpen(dps); /* default pen style */  // pen dotstyle = black; /* point style */  real xmin = -1.6030465381283199, xmax = 7.095084767820557, ymin = -1.3624649422453508, ymax = 4.065350676871526;  /* image dimensions */   /* draw figures */ draw((0,0)--(0,3));  draw((0,0)--(4,0));  draw((4,0)--(0,3));  draw((0,0.2857142857142857)--(0.2857142857142857,0.2857142857142857));  draw((0.2857142857142857,0.2857142857142857)--(0.2857142857142857,0));  draw((0.07142857142857142,0)--(1.4857142857142858,1.885714285714286));  label("$A$",(0, 0),SW*labelscalefactor);  label("$B$",(4,0),SE*labelscalefactor);  label("$C$",(0, 3),N*labelscalefactor);  label("$D$",(0.2857142857142857,0),S*labelscalefactor);  label("$E$",(0.2857142857142857, 0.2857142857142857),E*labelscalefactor);  label("$F$",(0.0714285714, 0),S*labelscalefactor);  label("$G$", (1.49, 1.89), NE*labelscalefactor);  /* dots and labels */ clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle);   /* end of picture */ [/asy] Let $AD=x$. Note that $\triangle DEF$ is a $3{-}4{-}5$ triangle, so $EF=\frac{5}{4}x$ and $FD=\frac{3}{4}x$. $BF=BD+FD=4-x+\frac{3}{4}x=4-\frac{1}{4}x$. We know that $GE$ is $2$ from the problem so $GF=2+\frac{5}{4}x$. $\triangle FGB$ is also a $3{-}4{-}5$ triangle with $GF:BF=3:5$. We now have $3\left(4-\frac{1}{4}x\right)=5\left(2+\frac{5}{4}x\right)$. Solving this equation, we get that $x=\frac{2}{7}$ so the area of $S$ is $\frac{4}{49}$. The area of the triangle is $\frac{3\cdot 4}{2}=6$ so the fraction of field that is unplanted is $\frac{\frac{4}{49}}{6}=\frac{2}{147}$. Thus, the fraction of the field that is planted is $1-\frac{2}{147}=\boxed{\textbf{(D) } \frac{145}{147}}$.

~Heavytoothpaste

Solution 7 (Coordinate Geometry)

We use coordinate geometry. Let the right angle be at $(0,0)$ and the hypotenuse be the line $3x+4y = 12$ for $0\le x\le 3$. Denote the position of $S$ as $(s,s)$, and by the point to line distance formula, we know that \begin{align*} \frac{|3s+4s-12|}{5} &= 2 \\ |7s-12| &= 10 \end{align*} Solving this, we get $s=\frac{22}{7}, \frac{2}{7}$. Obviously $s<\frac{22}{7}$, so $s = \frac{2}{7}$, and from here, the rest of the solution follows to get $\boxed{\textbf{(D) } \frac{145}{147}}$.

Solution 8 (Coordinate Geometry)

Let the right angle be at $(0,0)$, the point $(x,x)$ be the far edge of the unplanted square and the hypotenuse be the line $y=-\frac{3}{4}x+3$. Since the line from $(x,x)$ to the hypotenuse is the shortest possible distance, we know this line, call it line $\l$, is perpendicular to the hypotenuse and therefore has a slope of $\frac{4}{3}$.

Since we know $m=\frac{4}{3}$ , we can see that the line rises by $\frac{8}{5}$ and moves to the right by $\frac{6}{5}$ to meet the hypotenuse. (Let $2 = 5x$ and the rise be $4x$ and the run be $3x$ and then solve.) Therefore, line $\l$ intersects the hypotenuse at the point $\left(x+\frac{6}{5}, x+\frac{8}{5}\right)$. Plugging into the equation for the hypotenuse we have $x=\frac{2}{7}$ , and after a bit of computation we get $\boxed{\textbf{(D) } \frac{145}{147}}$.

Solution 9 (Pythagorean Theorem)

Let the side length of the square be $a$, and the lengths that the line from $S$ hits the hypotenuse be $x$ and $5-x$. Also, connect the outermost vertex of $S$ to the vertices that $S$ isn't connected to. Note that the line that hits the hypotenuse must create a right angle, since it is the shortest possible distance. This creates two pairs of right triangles that share the same hypotenuse. This means that we can set up a system of equations using the Pythagorean Theorem: \begin{align*} a^2+(4-a)^2&=(5-x)^2+2^2, \\ a^2+(3-a)^2&=x^2+2^2. \end{align*} After *some* algebra, we obtain $a=\frac{2}{7}$, which gives the answer $\boxed{\textbf{(D) } \frac{145}{147}}$.

Solution 10 (Proportions)

We name small triangle the triangle similar to given in which unplanted square $S$ is inscribed. The height of given triangle is 2.4 units so similarity coefficient is $\frac {2.4 - 2}{2.4} = \frac {1}{6}$ , the area is $\frac {1}{36}$ of total area.

The ratio of planted area in small triangle to the area of the square is $\frac {3}{8} + \frac {2}{3} = \frac {25}{24}.$

The fraction of planted area in small triangle is $\frac {25}{25+24} = \frac {25}{49}.$

Therefore, the fraction of the planted field is $\frac {25}{49} \cdot  \frac {1}{36} + \frac {35}{36} = \boxed{\textbf{(D) } \frac{145}{147}}.$

vladimir.shelomovskii@gmail.com, vvsss

Solution 11 (Bash)

[asy] size(240); pair A, B, C, D, F, X, Y, P, Q, M, N; A = origin; label(A, "$A$", SW); B = (4,0); label(B, "$B$", S); C = (0,3); label(C, "$C$", W); D = (2/7,2/7); label(D, "$D$", NE); F = foot(D,B,C); label(F, "$F$", NE); X = (2/7,39/14); label(X, "$X$", NE, red); Y = (76/21,2/7); label(Y, "$Y$", NE, red); P = foot(X,A,C); label(P, "$P$", W, red); Q = foot(Y,A,B); label(Q, "$Q$", S, red); M = (2/7,0); label(M, "$M$", S); N = (0,2/7); label(N, "$N$", W);  fill(A--(2/7,0)--D--(0,2/7)--cycle, lightgray); draw(A--B--C--cycle); draw((2/7,0)--D--(0,2/7)); label("$x$", midpoint(A--M), S); label("$x$", midpoint(A--N), W); label("$2$", midpoint(D--F), SE); draw(D--F); draw(D--X, red); draw(D--Y, red); draw(X--P, red); draw(Y--Q, red); [/asy]

Denote $A,B,C$ to be the three vertices of the triangular field. Also denote $A,M,D,N$ to be the vertices of the square $S$. Let $X$ be on $BC$ such that $AC\parallel DX$ and $Y$ be on $BC$ such that $AB\parallel DY$. Let $P$ and $Q$ be the foot of the altitudes from $X$ to $AC$ and from $Y$ to $AB$ respectively.

Note that $\triangle ABC \sim \triangle DYX \sim \triangle PXC \sim \triangle QBY$. Thus, $PC = x \cdot \frac34$ and $QB = x \cdot \frac43$, making \begin{align*} DX &= 3-x-\dfrac{3}{4}x = 3-\dfrac{7}{4}x, \\ MQ &= 4-x-\dfrac{4}{3}x = 4-\dfrac{7}{3}x. \end{align*} Also from the similarity ratio is the fact that $CX = \frac54 x$ and $BY = \frac53 x$, making \[XY = 5 - \dfrac{5}{4}x - \dfrac{5}{3}x = 5 - \dfrac{35}{12}x.\] Computing the area of $\triangle XDY$ in two ways gives an equation for $x$: \begin{align*} \left(3-\dfrac{7}{4}x\right)\left(4-\dfrac{7}{3}x\right) &= 2\cdot \left(5 - \dfrac{35}{12}x\right) \\ 10-\dfrac{35}{6}x &= \dfrac{49}{12}x^2 - 14x + 12 \\ \dfrac{49}{12}x^2 - \dfrac{49}{6}x + 2 &= 0 \\ 49x^2 - 98x + 24 &= 0 \\ x&=\dfrac{2}{7} \text{ or } \dfrac{12}{7}. \end{align*} But $x=\dfrac{12}{7}$ is extraneous. Thus, the area of square $S = x^2 = \dfrac{4}{49}$, making the portion of the field that is planted being \[1 - \dfrac{\tfrac{4}{49}}{6} = 1 - \dfrac{2}{147} = \boxed{\textbf{(D) } \frac{145}{147}}.\]

-Solution by sml1809

Solution 12

Let the square have side length $x$. Note that when $x = \dfrac{12}{7}$, the square is inscribed and touching the hypotenuse. Denote $f(x)$ to be the minimum distance from the square to the hypotenuse. Notably, $f$ is linear with respect to $x$. $f(0) = \dfrac{12}{5}$, because it is simply the length of the hypotenuse's altitude. Similarly, $f(\dfrac{12}{7}) = 0$. We can find that $f(x) = \dfrac{12-7x}{5}$. Setting this equal to $2$, we get that $f(\dfrac{2}{7}) = 2$. Therefore, the side has side length $\dfrac27$, and has area $\dfrac{4}{49}$. So, the unshaded area is $1 - \dfrac{\frac{4}{49}}{6} = \boxed{\dfrac{145}{147}}$, or $(D)$. ~Puck_0

Video Solution by Pi Academy (Fast and Easy with Area Addition)

https://youtu.be/Jdx74PGIgpw?si=kO6EGrKQQUkp22X1

~ Pi Academy

Video Solution (#21-#25)

https://youtube.com/playlist?list=PLpxy89D2tvVow8EoCSsNY3Y-2SwJly_SZ&si=aEJ3Ttjck10aCIUH

Video Solution by Richard Rusczyk

https://www.youtube.com/watch?v=p9npzq4FY_Y

~ dolphin7

See Also

2018 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 22
Followed by
Problem 24
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions
2018 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 16
Followed by
Problem 18
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png