Difference between revisions of "1975 Canadian MO Problems/Problem 1"
(Added solution) |
(→Solution) |
||
(One intermediate revision by the same user not shown) | |||
Line 7: | Line 7: | ||
− | |||
+ | <math>=\left(\frac{2^3\cdot1+2^3\cdot2^3+2^3\cdot3^3+2^3\cdot4^3+\cdots+2^3n^3}{3^3+3^3\cdot2^3+3^3\cdot3^3+3^3\cdot4^3+\cdots+3^3n^3}\right)^{1/3}</math> | ||
− | |||
− | <math>\boxed{\frac{2}{3}}</math> | + | <math>=\left[\frac{2^3\cancel{(1^3+2^3+3^3+\cdots+n^3)}}{3^3\cancel{(1^3+2^3+3^3+\cdots+n^3)}}\right]^{1/3}</math> |
+ | |||
+ | |||
+ | |||
+ | <math>=\boxed{\frac{2}{3}}</math> | ||
+ | |||
{{Old CanadaMO box|before=First question|num-a=2|year=1975}} | {{Old CanadaMO box|before=First question|num-a=2|year=1975}} |