Difference between revisions of "1987 AHSME Problems/Problem 29"

(Solution)
m (Fixed formatting at the end)
 
(One intermediate revision by one other user not shown)
Line 14: Line 14:
 
==Solution==
 
==Solution==
  
<math>(\text{A})</math>
+
If <math>n</math> is even, then <math>t_{(n/2)}</math> would be negative, which is not possible. Therefore, <math>n</math> is odd. With this function, backwards thinking is the key. If <math>t_x < 1</math>, then <math>x</math> is odd, and <math>t_{(x-1)} = \frac{1}{t_{x}}</math>. Otherwise, you keep on subtracting 1 and halving x until <math>t_\frac{x}{2^{n}} < 1</math>.
 +
We can use this logic to go backwards until we reach <math>t_1 = 1</math>, like so:
 +
 
 +
<math>t_n=\frac{19}{87}\\\\t_{n-1} = \frac{87}{19}\\\\t_{\frac{n-1}{2}} = \frac{68}{19}\\\\t_{\frac{n-1}{4}} = \frac{49}{19}\\\\t_{\frac{n-1}{8}} = \frac{30}{19}\\\\t_{\frac{n-1}{16}} = \frac{11}{19}\\\\t_{\frac{n-1}{16} - 1} = \frac{19}{11}\\\\t_{\frac{\frac{n-1}{16} - 1}{2}} = \frac{8}{11}\\\\t_{\frac{\frac{n-1}{16} - 1}{2} - 1} = \frac{11}{8}\\\\t_{\frac{\frac{\frac{n-1}{16} - 1}{2} - 1}{2}} = \frac{3}{8}\\\\t_{\frac{\frac{\frac{n-1}{16} - 1}{2} - 1}{2} - 1} = \frac{8}{3}\\\\t_{\frac{\frac{\frac{\frac{n-1}{16} - 1}{2} - 1}{2} - 1}{2}} = \frac{5}{3}\\\\t_{\frac{\frac{\frac{\frac{n-1}{16} - 1}{2} - 1}{2} - 1}{4}} = \frac{2}{3}\\\\t_{\frac{\frac{\frac{\frac{n-1}{16} - 1}{2} - 1}{2} - 1}{4} - 1} = \frac{3}{2}\\\\t_{\frac{\frac{\frac{\frac{\frac{n-1}{16} - 1}{2} - 1}{2} - 1}{4} - 1}{2}} = \frac{1}{2}\\\\t_{\frac{\frac{\frac{\frac{\frac{n-1}{16} - 1}{2} - 1}{2} - 1}{4} - 1}{2} - 1} = 2\\\\t_{\frac{\frac{\frac{\frac{\frac{\frac{n-1}{16} - 1}{2} - 1}{2} - 1}{4} - 1}{2} - 1}{2}} = t_1 = 1 \Rightarrow \frac{\frac{\frac{\frac{\frac{\frac{n-1}{16} - 1}{2} - 1}{2} - 1}{4} - 1}{2} - 1}{2} = 1 \Rightarrow n = 1905</math>, so the answer is <math>\boxed{\textbf{(A)} 15}</math>.
  
 
== See also ==
 
== See also ==

Latest revision as of 11:46, 31 March 2018

Problem

Consider the sequence of numbers defined recursively by $t_1=1$ and for $n>1$ by $t_n=1+t_{(n/2)}$ when $n$ is even and by $t_n=\frac{1}{t_{(n-1)}}$ when $n$ is odd. Given that $t_n=\frac{19}{87}$, the sum of the digits of $n$ is

$\textbf{(A)}\ 15 \qquad \textbf{(B)}\ 17 \qquad \textbf{(C)}\ 19 \qquad \textbf{(D)}\ 21 \qquad \textbf{(E)}\ 23$


Solution

If $n$ is even, then $t_{(n/2)}$ would be negative, which is not possible. Therefore, $n$ is odd. With this function, backwards thinking is the key. If $t_x < 1$, then $x$ is odd, and $t_{(x-1)} = \frac{1}{t_{x}}$. Otherwise, you keep on subtracting 1 and halving x until $t_\frac{x}{2^{n}} < 1$. We can use this logic to go backwards until we reach $t_1 = 1$, like so:

$t_n=\frac{19}{87}\\\\t_{n-1} = \frac{87}{19}\\\\t_{\frac{n-1}{2}} = \frac{68}{19}\\\\t_{\frac{n-1}{4}} = \frac{49}{19}\\\\t_{\frac{n-1}{8}} = \frac{30}{19}\\\\t_{\frac{n-1}{16}} = \frac{11}{19}\\\\t_{\frac{n-1}{16} - 1} = \frac{19}{11}\\\\t_{\frac{\frac{n-1}{16} - 1}{2}} = \frac{8}{11}\\\\t_{\frac{\frac{n-1}{16} - 1}{2} - 1} = \frac{11}{8}\\\\t_{\frac{\frac{\frac{n-1}{16} - 1}{2} - 1}{2}} = \frac{3}{8}\\\\t_{\frac{\frac{\frac{n-1}{16} - 1}{2} - 1}{2} - 1} = \frac{8}{3}\\\\t_{\frac{\frac{\frac{\frac{n-1}{16} - 1}{2} - 1}{2} - 1}{2}} = \frac{5}{3}\\\\t_{\frac{\frac{\frac{\frac{n-1}{16} - 1}{2} - 1}{2} - 1}{4}} = \frac{2}{3}\\\\t_{\frac{\frac{\frac{\frac{n-1}{16} - 1}{2} - 1}{2} - 1}{4} - 1} = \frac{3}{2}\\\\t_{\frac{\frac{\frac{\frac{\frac{n-1}{16} - 1}{2} - 1}{2} - 1}{4} - 1}{2}} = \frac{1}{2}\\\\t_{\frac{\frac{\frac{\frac{\frac{n-1}{16} - 1}{2} - 1}{2} - 1}{4} - 1}{2} - 1} = 2\\\\t_{\frac{\frac{\frac{\frac{\frac{\frac{n-1}{16} - 1}{2} - 1}{2} - 1}{4} - 1}{2} - 1}{2}} = t_1 = 1 \Rightarrow \frac{\frac{\frac{\frac{\frac{\frac{n-1}{16} - 1}{2} - 1}{2} - 1}{4} - 1}{2} - 1}{2} = 1 \Rightarrow n = 1905$, so the answer is $\boxed{\textbf{(A)} 15}$.

See also

1987 AHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 28
Followed by
Problem 30
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png