Difference between revisions of "2017 AMC 8 Problems/Problem 5"

m (Solution)
m (Solution 3)
 
(23 intermediate revisions by 14 users not shown)
Line 1: Line 1:
==Problem 5==
+
==Problem==
 
What is the value of the expression <math>\frac{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7 \cdot 8}{1+2+3+4+5+6+7+8}</math>?
 
What is the value of the expression <math>\frac{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7 \cdot 8}{1+2+3+4+5+6+7+8}</math>?
  
 
<math>\textbf{(A) }1020\qquad\textbf{(B) }1120\qquad\textbf{(C) }1220\qquad\textbf{(D) }2240\qquad\textbf{(E) }3360</math>  
 
<math>\textbf{(A) }1020\qquad\textbf{(B) }1120\qquad\textbf{(C) }1220\qquad\textbf{(D) }2240\qquad\textbf{(E) }3360</math>  
  
==Solution==
+
==Solution 1==
We evaluate both the top and bottom: <math>\frac{40320}{36}</math>. This simplifies to <math>\boxed{\textbf{(B)}\ 1120}.</math>
+
 
 +
Directly calculating:
 +
 
 +
We evaluate both the top and bottom: <math>\frac{40320}{36}</math>. This simplifies to <math>\boxed{\textbf{(B)}\ 1120}</math>.
 +
 
 +
==Solution 2==
 +
 
 +
It is well known that the sum of all numbers from <math>1</math> to <math>n</math> is <math>\frac{n(n+1)}{2}</math>. Therefore, the denominator is equal to <math>\frac{8 \cdot 9}{2} = 4 \cdot 9 = 2 \cdot 3 \cdot 6</math>. Now, we can cancel the factors of <math>2</math>, <math>3</math>, and <math>6</math> from both the numerator and denominator, only leaving <math>8 \cdot 7 \cdot 5 \cdot 4 \cdot 1</math>. This evaluates to <math>\boxed{\textbf{(B)}\ 1120}</math>.
 +
 
 +
==Solution 3==
 +
 
 +
First, we evaluate <math>1 + 2 + 3 + 4 + 5 + 6 + 7 + 8</math> to get 36. We notice that <math>36</math> is <math>6</math> squared, so we can factor the denominator like <math>\frac{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7 \cdot 8}{6 \cdot 6}</math> then cancel the 6s out to get <math>\frac{4 \cdot 5 \cdot 7 \cdot 8}{1}</math>. Now that we have escaped fraction form, we multiply <math>4 \cdot 5 \cdot 7 \cdot 8</math>. Multiplying these, we get <math>\boxed{\textbf{(B)}\ 1120}</math>.
 +
 
 +
~megaboy6679 for minor edits
 +
 
 +
==Video Solution (CREATIVE THINKING!!!)==
 +
https://youtu.be/O5thBbTXpeY
 +
 
 +
~Education, the Study of Everything
 +
 
 +
==Video Solution==
 +
https://youtu.be/cY4NYSAD0vQ
 +
 
 +
https://youtu.be/tGa0YTskTsw
 +
 
 +
~savannahsolver
 +
 
 +
==Video Solution by OmegaLearn==
 +
https://youtu.be/TkZvMa30Juo?t=3529
 +
 
 +
~pi_is_3.14
  
 
==See Also==
 
==See Also==
{{AMC8 box|year=2017|num-b=20|num-a=22}}
+
{{AMC8 box|year=2017|num-b=4|num-a=6}}
  
 
{{MAA Notice}}
 
{{MAA Notice}}

Latest revision as of 13:40, 2 November 2024

Problem

What is the value of the expression $\frac{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7 \cdot 8}{1+2+3+4+5+6+7+8}$?

$\textbf{(A) }1020\qquad\textbf{(B) }1120\qquad\textbf{(C) }1220\qquad\textbf{(D) }2240\qquad\textbf{(E) }3360$

Solution 1

Directly calculating:

We evaluate both the top and bottom: $\frac{40320}{36}$. This simplifies to $\boxed{\textbf{(B)}\ 1120}$.

Solution 2

It is well known that the sum of all numbers from $1$ to $n$ is $\frac{n(n+1)}{2}$. Therefore, the denominator is equal to $\frac{8 \cdot 9}{2} = 4 \cdot 9 = 2 \cdot 3 \cdot 6$. Now, we can cancel the factors of $2$, $3$, and $6$ from both the numerator and denominator, only leaving $8 \cdot 7 \cdot 5 \cdot 4 \cdot 1$. This evaluates to $\boxed{\textbf{(B)}\ 1120}$.

Solution 3

First, we evaluate $1 + 2 + 3 + 4 + 5 + 6 + 7 + 8$ to get 36. We notice that $36$ is $6$ squared, so we can factor the denominator like $\frac{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7 \cdot 8}{6 \cdot 6}$ then cancel the 6s out to get $\frac{4 \cdot 5 \cdot 7 \cdot 8}{1}$. Now that we have escaped fraction form, we multiply $4 \cdot 5 \cdot 7 \cdot 8$. Multiplying these, we get $\boxed{\textbf{(B)}\ 1120}$.

~megaboy6679 for minor edits

Video Solution (CREATIVE THINKING!!!)

https://youtu.be/O5thBbTXpeY

~Education, the Study of Everything

Video Solution

https://youtu.be/cY4NYSAD0vQ

https://youtu.be/tGa0YTskTsw

~savannahsolver

Video Solution by OmegaLearn

https://youtu.be/TkZvMa30Juo?t=3529

~pi_is_3.14

See Also

2017 AMC 8 (ProblemsAnswer KeyResources)
Preceded by
Problem 4
Followed by
Problem 6
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png