Difference between revisions of "1961 AHSME Problems/Problem 40"
Math-family (talk | contribs) m (→Solution 3) |
|||
(12 intermediate revisions by 3 users not shown) | |||
Line 1: | Line 1: | ||
− | ==Problem | + | == Problem == |
Find the minimum value of <math>\sqrt{x^2+y^2}</math> if <math>5x+12y=60</math>. | Find the minimum value of <math>\sqrt{x^2+y^2}</math> if <math>5x+12y=60</math>. | ||
− | <math>\textbf{(A) }\frac{60}{13}\qquad\textbf{(B) }\frac{13}{5} \qquad\textbf{(C) }\frac{13}{12}\qquad\textbf{(D) }1 \qquad\textbf{(E) }0</math> | + | <math>\textbf{(A)}\ \frac{60}{13}\qquad |
+ | \textbf{(B)}\ \frac{13}{5}\qquad | ||
+ | \textbf{(C)}\ \frac{13}{12}\qquad | ||
+ | \textbf{(D)}\ 1\qquad | ||
+ | \textbf{(E)}\ 0 </math> | ||
+ | |||
+ | ==Solutions== | ||
+ | ===Solution 1=== | ||
+ | Let <math>x^2 + y^2 = r^2</math>, so <math>r = \sqrt{x^2 + y^2}</math>. Thus, this problem is really finding the shortest distance from the origin to the line <math>5x + 12y = 60</math>. | ||
+ | |||
+ | <asy>import graph; size(8.22 cm); real lsf=0.5; pen dps=linewidth(0.7)+fontsize(10); defaultpen(dps); pen ds=black; real xmin=-5.2,xmax=13.2,ymin=-5.2,ymax=6.2; | ||
+ | pen cqcqcq=rgb(0.75,0.75,0.75), evevff=rgb(0.9,0.9,1), zzttqq=rgb(0.6,0.2,0); | ||
+ | |||
+ | /*grid*/ pen gs=linewidth(0.7)+cqcqcq+linetype("2 2"); real gx=1,gy=1; | ||
+ | for(real i=ceil(xmin/gx)*gx;i<=floor(xmax/gx)*gx;i+=gx) draw((i,ymin)--(i,ymax),gs); for(real i=ceil(ymin/gy)*gy;i<=floor(ymax/gy)*gy;i+=gy) draw((xmin,i)--(xmax,i),gs); | ||
+ | Label laxis; laxis.p=fontsize(10); | ||
+ | xaxis(xmin,xmax,defaultpen+black,Ticks(laxis,Step=1.0,Size=2,NoZero),Arrows(6),above=true); yaxis(ymin,ymax,defaultpen+black,Ticks(laxis,Step=1.0,Size=2,NoZero),Arrows(6),above=true); | ||
+ | clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle); | ||
+ | |||
+ | draw((0,5)--(12,0),Arrows); | ||
+ | draw(Circle((0,0),60/13),dotted); | ||
+ | |||
+ | </asy> | ||
+ | |||
+ | From the graph, the shortest distance from the origin to the line is the [[altitude]] to the hypotenuse of the right triangle with legs <math>5</math> and <math>12</math>. The hypotenuse is <math>13</math> and the area is <math>30</math>, so the altitude to the hypotenuse is <math>\frac{60}{13}</math>, which is answer choice <math>\boxed{\textbf{(A)}}</math>. | ||
+ | |||
+ | ===Solution 2=== | ||
+ | Solve for <math>y</math> in the linear equation. | ||
+ | <cmath>12y = 60 - 5x</cmath> | ||
+ | <cmath>y = 5 - \frac{5x}{12}</cmath> | ||
+ | Substitute <math>y</math> in <math>\sqrt{x^2+y^2}</math>. | ||
+ | <cmath>\sqrt{x^2 + (5 - \frac{5x}{12})^2}</cmath> | ||
+ | <cmath>\sqrt{x^2 + 25 - \frac{25x}{6} + \frac{25x^2}{144}}</cmath> | ||
+ | <cmath>\sqrt{\frac{169x^2}{144} - \frac{25x}{6} + 25}</cmath> | ||
+ | To find the minimum, find the vertex of the quadratic. The x-value of the vertex is <math>\frac{25}{6} \cdot \frac{72}{169} = \frac{300}{169}</math>. Thus, the minimum value is | ||
+ | <cmath>\sqrt{\frac{169}{144} \cdot \frac{300^2}{169^2} - \frac{25}{6} \cdot \frac{300}{169} + 25}</cmath> | ||
+ | <cmath>\sqrt{\frac{10000}{16 \cdot 169} - \frac{1250}{169} + 25}</cmath> | ||
+ | <cmath>\sqrt{\frac{625}{169} - \frac{1250}{169} + \frac{4225}{169}}</cmath> | ||
+ | <cmath>\sqrt{\frac{3600}{169}}</cmath> | ||
+ | <cmath>\frac{60}{13}</cmath> | ||
+ | The answer is <math>\boxed{\textbf{(A)}}</math>. | ||
+ | |||
+ | ===Solution 3=== | ||
+ | |||
+ | By Cauchy-Schwarz, | ||
+ | <cmath>(5^2 + 12^2)(x^2 + y^2) \geq (5x+12y)^2</cmath> | ||
+ | Therefore: | ||
+ | <cmath>(13^2)(x^2 + y^2) \geq 60^2</cmath> | ||
+ | <cmath>13\sqrt{x^2 + y^2} \geq 60</cmath> | ||
+ | Therefore: | ||
+ | <cmath>\sqrt{x^2 + y^2} \geq \frac{60}{13}</cmath> | ||
+ | Thus the answer is <math>\boxed{\textbf{(A)}}</math>. | ||
+ | |||
+ | ==See Also== | ||
+ | {{AHSME 40p box|year=1961|num-b=39|after=Last Question}} | ||
+ | |||
+ | [[Category:Intermediate Algebra Problems]] | ||
{{MAA Notice}} | {{MAA Notice}} |
Latest revision as of 21:31, 11 June 2020
Problem
Find the minimum value of if .
Solutions
Solution 1
Let , so . Thus, this problem is really finding the shortest distance from the origin to the line .
From the graph, the shortest distance from the origin to the line is the altitude to the hypotenuse of the right triangle with legs and . The hypotenuse is and the area is , so the altitude to the hypotenuse is , which is answer choice .
Solution 2
Solve for in the linear equation. Substitute in . To find the minimum, find the vertex of the quadratic. The x-value of the vertex is . Thus, the minimum value is The answer is .
Solution 3
By Cauchy-Schwarz, Therefore: Therefore: Thus the answer is .
See Also
1961 AHSC (Problems • Answer Key • Resources) | ||
Preceded by Problem 39 |
Followed by Last Question | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 • 26 • 27 • 28 • 29 • 30 • 31 • 32 • 33 • 34 • 35 • 36 • 37 • 38 • 39 • 40 | ||
All AHSME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.